These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 534513)
1. Effect of ionophores on carrier-mediated electron translocation in ferricyanide-containing liposomes. Miller M; Petersen LC; Hansen FB; Nicholls P Biochem J; 1979 Oct; 184(1):125-31. PubMed ID: 534513 [TBL] [Abstract][Full Text] [Related]
2. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria. Papa S; Guerrieri F; Lorusso M; Izzo G; Boffoli D; Capuano F; Capitanio N; Altamura N Biochem J; 1980 Oct; 192(1):203-18. PubMed ID: 6272694 [TBL] [Abstract][Full Text] [Related]
3. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase. Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546 [TBL] [Abstract][Full Text] [Related]
4. [Transmembrane redox reactions, coupled with proton transfer in lipid bilayer membranes]. Gorskaia IA; Kochergina OD; Antonenko IuN; Kotel'nikova AV; Iaguzhinskiĭ LS Biokhimiia; 1984 May; 49(5):821-6. PubMed ID: 6331535 [TBL] [Abstract][Full Text] [Related]
5. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
6. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential. Kell DB; John P; Ferguson SJ Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the redox components of transplasma membrane electron transport system from Leishmania donovani promastigotes. Bera T; Lakshman K; Ghanteswari D; Pal S; Sudhahar D; Islam MN; Bhuyan NR; Das P Biochim Biophys Acta; 2005 Oct; 1725(3):314-26. PubMed ID: 16023297 [TBL] [Abstract][Full Text] [Related]
8. Restoration of respiratory electron-transport reactions in quinone-depleted particle preparations from Anacystis nidulans. Peschek GA Biochem J; 1980 Feb; 186(2):515-23. PubMed ID: 6769434 [TBL] [Abstract][Full Text] [Related]
9. Interaction of drugs with a model membrane protein. Effects of local anesthetics on electron transfer and hydrogen ion uptake in ionophore stimulated cytochrome oxidase proteoliposomes. Singer MA Biochem Pharmacol; 1983 May; 32(10):1619-25. PubMed ID: 6305365 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis. van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885 [TBL] [Abstract][Full Text] [Related]
11. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site. Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039 [TBL] [Abstract][Full Text] [Related]
12. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox. Barr R; Branstetter BA; Rajnicek A; Crane FL; Löw H Biochim Biophys Acta; 1991 Jun; 1058(2):261-8. PubMed ID: 1904770 [TBL] [Abstract][Full Text] [Related]
13. Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes. Arents JC; van Dekken H; Hellingwerf KJ; Westerhoff HV Biochemistry; 1981 Sep; 20(18):5114-23. PubMed ID: 6271177 [TBL] [Abstract][Full Text] [Related]
14. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential. Sorgato MC; Ferguson SJ; Kell DB; John P Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021 [TBL] [Abstract][Full Text] [Related]
15. Cyanide-insensitive oxidation of ascorbate + NNN'N'-tetramethyl-p-phenylenediamine mixture by mung-bean (Phaseolus aureus) mitochondria. An energy-linked function. Wilson SB Biochem J; 1978 Oct; 176(1):129-36. PubMed ID: 728100 [TBL] [Abstract][Full Text] [Related]
16. Properties of a transplasma membrane electron transport system in HeLa cells. Sun IL; Crane FL; Grebing C; Löw H J Bioenerg Biomembr; 1984 Dec; 16(5-6):583-95. PubMed ID: 6537437 [TBL] [Abstract][Full Text] [Related]
17. Properties of a transplasma membrane redox system of Phanerochaete chrysosporium. Stahl JD; Aust SD Arch Biochem Biophys; 1995 Jul; 320(2):369-74. PubMed ID: 7625845 [TBL] [Abstract][Full Text] [Related]
18. The regulation of glyceride synthesis in isolated white-fat cells. The effects of acetate, pyruvate, lactate, palmitate, electron-acceptors, uncoupling agents and oligomycin. Saggerson ED Biochem J; 1972 Aug; 128(5):1069-78. PubMed ID: 4643693 [TBL] [Abstract][Full Text] [Related]
19. Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Erdahl WL; Chapman CJ; Taylor RW; Pfeiffer DR Biophys J; 1995 Dec; 69(6):2350-63. PubMed ID: 8599641 [TBL] [Abstract][Full Text] [Related]
20. Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin. Sun IL; Crane FL; Grebing C; Löw H Exp Cell Res; 1985 Feb; 156(2):528-36. PubMed ID: 3881265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]