These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 534765)
61. RHEOLOGY IN MEDICINE AND SURGERY. DINTENFASS L Med J Aust; 1964 Dec; 2():926-30. PubMed ID: 14232466 [No Abstract] [Full Text] [Related]
62. A model of blood interaction with optical-fluid guide for laser angioplasty. Ilegbusi OJ; Nosovitsky VA Ann Biomed Eng; 1997; 25(4):653-64. PubMed ID: 9236978 [TBL] [Abstract][Full Text] [Related]
63. [Fundamental data in hemorheology. I. Parameters controlling the fundamental processes in hemorheology]. Stoltz JF Biomed Pharmacother; 1985; 39(6):272-81. PubMed ID: 3910127 [TBL] [Abstract][Full Text] [Related]
64. Thin film blood flow in rectangular channels with application to artificial kidney haemodynamics. Gaylor JD J Biomech; 1973 May; 6(3):241-51. PubMed ID: 4706934 [No Abstract] [Full Text] [Related]
65. General fluid mechanical effects. Silberberg A Fed Proc; 1971; 30(5):1559-64. PubMed ID: 5119362 [No Abstract] [Full Text] [Related]
67. The use of the Taylor-Couette stability problem to validate a constitutive equation for blood. Deutsch S; Phillips WM Biorheology; 1977; 14(5-6):253-66. PubMed ID: 610779 [No Abstract] [Full Text] [Related]
68. An interpretation of low strain rate blood viscosity measurements: a continuum approach. Deutsch S; Phillips WM Biorheology; 1976 Nov; 13(5):297-307. PubMed ID: 1000080 [No Abstract] [Full Text] [Related]
69. Theory of non-Newtonian viscosity of blood at low shear rate--effect of rouleaux. Murata T Biorheology; 1976 Nov; 13(5):287-96. PubMed ID: 1000079 [No Abstract] [Full Text] [Related]
70. Fahraeus -- Lindqvist effect in oscilliatory flow. Singh M; Coulter NA Biorheology; 1979; 16(1-2):119-20. PubMed ID: 476293 [No Abstract] [Full Text] [Related]
71. Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries. Hochmuth RM; Sutera SP Bibl Anat; 1969; 10():113-23. PubMed ID: 5407354 [No Abstract] [Full Text] [Related]
72. The effect of diabetes on blood flow properties. McMillan DE Diabetes; 1983 May; 32 Suppl 2():56-63. PubMed ID: 6400669 [TBL] [Abstract][Full Text] [Related]
73. Observations on blood flow related electrical impedance changes in rigid tubes. Visser KR; Lamberts R; Korsten HH; Zijlstra WG Pflugers Arch; 1976 Nov; 366(2-3):289-91. PubMed ID: 1033532 [TBL] [Abstract][Full Text] [Related]
74. Red cell motions and wall interactions in tube flow. Goldsmith HL Fed Proc; 1971; 30(5):1578-90. PubMed ID: 5119364 [No Abstract] [Full Text] [Related]
75. A preliminary study of rheology of granulocytes. Adell R; Skalak R; Branemark PI Blut; 1970 Aug; 21(2):91-105. PubMed ID: 5505159 [No Abstract] [Full Text] [Related]
76. [Rheological properties of the blood in ischemic heart disease]. Grigor'iants RA; Firsov NN; Gasilin VS Kardiologiia; 1978 Aug; 18(8):114-8. PubMed ID: 691950 [TBL] [Abstract][Full Text] [Related]
77. Flow of a viscous fluid through an elastic tube with applications to blood flow. Rubinow SI; Keller JB J Theor Biol; 1972 May; 35(2):299-313. PubMed ID: 5039296 [No Abstract] [Full Text] [Related]
78. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Sun C; Munn LL Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630 [TBL] [Abstract][Full Text] [Related]
79. Engineering simulation of the viscous behavior of whole blood using suspensions of flexible particles. Tickner EG; Sacks AH Circ Res; 1969 Oct; 25(4):389-400. PubMed ID: 5347220 [No Abstract] [Full Text] [Related]
80. The effect of microstructure on the rheological properties of blood. Kang CK; Eringen AC Bull Math Biol; 1976; 38(2):135-59. PubMed ID: 1268373 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]