These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 534765)
81. [Branches of the vascular bed: a first approach using influence area]. Lefort M; Stoltz JF; Larcan A Biorheology; 1974 Jan; 11(1):79-86. PubMed ID: 4824530 [No Abstract] [Full Text] [Related]
82. The effect of steady flow on transient viscoelastic behavior of blood. Kaibara M; Fukada E Biorheology; 1981; 18(3-6):405-13. PubMed ID: 7326384 [No Abstract] [Full Text] [Related]
83. A three--dimensional dyadic Walburn-Schneck constitutive equation for blood. Easthope P Biorheology; 1989; 26(1):37-44. PubMed ID: 2804273 [TBL] [Abstract][Full Text] [Related]
84. [Blood flow in the capillaries]. Barras JP Helv Med Acta; 1969 Mar; 34(6):468-77. PubMed ID: 5779214 [No Abstract] [Full Text] [Related]
85. Pulsing blood flow in capillary tubes. McComis WT; Charm SE; Kurland G Am J Physiol; 1967 Jan; 212(1):49-53. PubMed ID: 6016014 [No Abstract] [Full Text] [Related]
88. Laminar regime transition for blood flow in tubes. Hershey D; Smolin R Biorheology; 1967 Jan; 4(2):61-7. PubMed ID: 5619364 [No Abstract] [Full Text] [Related]
89. Frequency dependence of blood viscosity in oscillatory flow. Coulter NA; Singh M Biorheology; 1971 Dec; 8(3):115-24. PubMed ID: 5146946 [No Abstract] [Full Text] [Related]
90. Gravity flow of a fluid with couple stress along an inclined plane with application to blood flow. Chaturani P; Upadhya VS Biorheology; 1977; 14(5-6):237-46. PubMed ID: 610777 [No Abstract] [Full Text] [Related]
91. Steady fluid flow through veins and collapsible tubes. Griffiths DJ Med Biol Eng; 1971 Nov; 9(6):597-602. PubMed ID: 5158811 [No Abstract] [Full Text] [Related]
92. Biorheology, information theory and cybernetics. Bugliarello G Biorheology; 1973 Jun; 10(2):117-27. PubMed ID: 4728629 [No Abstract] [Full Text] [Related]
93. An approximate Casson fluid model for tube flow of blood. Walawender WP; Chen TY; Cala DF Biorheology; 1975 Apr; 12(2):111-9. PubMed ID: 1203514 [No Abstract] [Full Text] [Related]
95. Effect of the branch-to-trunk area ratio on the transition to turbulent flow: implications in the cardiovascular system. Walburn FJ; Blick EF; Stein PD Biorheology; 1979; 16(6):411-7. PubMed ID: 534764 [No Abstract] [Full Text] [Related]
96. Poiseuille Award Lecture: biorheology, an agent of scientific progress. Joly M Biorheology; 1978; 15(5-6):391-8. PubMed ID: 747761 [No Abstract] [Full Text] [Related]
97. The effects of frequency of oscillatory flow on the impedance of rigid, blood-filled tubes. Thurston GB Biorheology; 1976 Jun; 13(3):191-9. PubMed ID: 953255 [No Abstract] [Full Text] [Related]
98. Particle flow behaviour in models of branching vessels: I. Vortices in 90 degrees T-junctions. Karino T; Kwong HH; Goldsmith HL Biorheology; 1979; 16(3):231-48. PubMed ID: 508933 [No Abstract] [Full Text] [Related]
99. Rheological behavior of blood in transient flow. Healy JC; Joly M Biorheology; 1975 Oct; 12(6):335-40. PubMed ID: 1212513 [No Abstract] [Full Text] [Related]
100. Some mathematical and numerical methods for determination of behaviour law of blood. Maurice G; Lucius M; Stoltz JF Biorheology Suppl; 1984; 1():107-10. PubMed ID: 6591961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]