These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5348607)

  • 41. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.
    Mora M; López LR; Lafuente J; Pérez J; Kleerebezem R; van Loosdrecht MC; Gamisans X; Gabriel D
    Water Res; 2016 Feb; 89():282-92. PubMed ID: 26704759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalysis of formation of mixed disulfides between cystine and beta-globulins by copper ions.
    Williamson MB
    Biochem Biophys Res Commun; 1970 May; 39(3):379-83. PubMed ID: 4987144
    [No Abstract]   [Full Text] [Related]  

  • 43. Conversion of sulfide sulfur to cystine sulfur in the rat, with use of radioactive sulfur.
    DZIEWIATKOWSKI DD
    J Biol Chem; 1946 Jul; 164():165-71. PubMed ID: 20989477
    [No Abstract]   [Full Text] [Related]  

  • 44. [On the question of the "labile" sulfide in ferredoxin from Clostridium pasteurianum].
    Gersonde K; Druskeit W
    Eur J Biochem; 1968 Apr; 4(3):391-4. PubMed ID: 5653772
    [No Abstract]   [Full Text] [Related]  

  • 45. The position of disulfide bonds in cobrotoxin.
    Yang CC; Yang HJ; Chiu RH
    Biochim Biophys Acta; 1970 Aug; 214(2):355-63. PubMed ID: 5533659
    [No Abstract]   [Full Text] [Related]  

  • 46. [Utilisation of molecular hydrogen by Chlorobium thiosulfatophilum. Growth and CO2-fixation].
    Lippert KD; Pfennig N
    Arch Mikrobiol; 1969; 65(1):29-47. PubMed ID: 4915429
    [No Abstract]   [Full Text] [Related]  

  • 47. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum).
    Chan LK; Weber TS; Morgan-Kiss RM; Hanson TE
    Microbiology (Reading); 2008 Mar; 154(Pt 3):818-829. PubMed ID: 18310028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical studies on sulfate-ruducing bacteria. 8. Sulfite reductase from Desulfovibrio vulgaris--mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties.
    Kobayashi K; Seki Y; Ishimoto M
    J Biochem; 1974 Mar; 75(3):519-29. PubMed ID: 4365884
    [No Abstract]   [Full Text] [Related]  

  • 49. THE METABOLISM OF THIOSULFATE IN SALMONELLA TYPHIMURIUM.
    LEINWEBER FJ; MONTY KJ
    J Biol Chem; 1963 Nov; 238():3775-80. PubMed ID: 14109219
    [No Abstract]   [Full Text] [Related]  

  • 50. Microradiographic and autoradiographic studies of keratin formation in human hair.
    Forslind B; Lindström B; Swanbeck G
    Acta Derm Venereol; 1971; 51(2):81-8. PubMed ID: 4101050
    [No Abstract]   [Full Text] [Related]  

  • 51. 35S-Sulfide incorporation during alkaline treatment of keratin and its relation to lanthionine formation.
    Feairheller SH; Taylor MM; Bailey DG
    Adv Exp Med Biol; 1977; 86B():177-86. PubMed ID: 20743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acid-labile sulfide of clostridial ferredoxin and its enzymatic exchange with sodium sulfide-35 S.
    Jeng DY; Mortenson LE
    Biochem Biophys Res Commun; 1968 Sep; 32(6):984-91. PubMed ID: 5723330
    [No Abstract]   [Full Text] [Related]  

  • 53. Dibasic amino acid transport in rat-kidney cortex slices.
    Segal S; Schwartzman L; Blair A; Bertoli D
    Biochim Biophys Acta; 1967 Feb; 135(1):127-35. PubMed ID: 6031497
    [No Abstract]   [Full Text] [Related]  

  • 54. [Utilization of inorganic sulfur sources by Staphylococcus aureus strains].
    Seltmann G; Voigt W
    Z Allg Mikrobiol; 1977; 17(6):437-50. PubMed ID: 930124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The preparation, properties, and reactivation of the mixed disulfide derivative of egg white lysozyme and L-cystine.
    Bradshaw RA; Kanarek L; Hill RL
    J Biol Chem; 1967 Sep; 242(17):3789-98. PubMed ID: 6037545
    [No Abstract]   [Full Text] [Related]  

  • 56. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum.
    Orlova MV; Tarlachkov SV; Dubinina GA; Belousova EV; Tutukina MN; Grabovich MY
    FEMS Microbiol Ecol; 2016 Dec; 92(12):. PubMed ID: 27660606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex "Sox"-studied by B3LYP-PCM and G3X(MP2) calculations.
    Steudel R; Steudel Y
    Phys Chem Chem Phys; 2010 Jan; 12(3):630-44. PubMed ID: 20066349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor.
    González-Sánchez A; Meulepas R; Revah S
    Environ Technol; 2008 Aug; 29(8):847-53. PubMed ID: 18724639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selenium as an acid labile sulfur replacement in putidaredoxin.
    Tsibris JC; Namtvedt MJ; Gunsalus IC
    Biochem Biophys Res Commun; 1968 Feb; 30(3):323-7. PubMed ID: 4296680
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.