BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 5348608)

  • 1. Streptococcal proteinase-catalyzed hydrolysis of some ester and amide substrates.
    Liu TY; Nomura N; Jonsson EK; Wallace BG
    J Biol Chem; 1969 Oct; 244(20):5745-56. PubMed ID: 5348608
    [No Abstract]   [Full Text] [Related]  

  • 2. On the mechanism of action of streptococcal proteinase. II. Comparison of the kinetics of proteinase- and papain-catalyzed hydrolysis of N-acylamino acid esters.
    Kortt AA; Liu TY
    Biochemistry; 1973 Jan; 12(2):328-37. PubMed ID: 4683008
    [No Abstract]   [Full Text] [Related]  

  • 3. Activity of the reduced zymogen of streptococcal proteinase.
    Bustin M; Lin MC; Stein WH; Moore S
    J Biol Chem; 1970 Feb; 245(4):846-9. PubMed ID: 5416667
    [No Abstract]   [Full Text] [Related]  

  • 4. On the mechanism of action of streptococcal proteinase. 3. The effect of pH, organic solvents, and deuterium oxide on the proteinase-catalyzed hydrolysis of N-acylamino acid esters.
    Kortt AA; Liu TY
    Biochemistry; 1973 Jan; 12(2):338-45. PubMed ID: 4683009
    [No Abstract]   [Full Text] [Related]  

  • 5. On the specificity of streptococcal proteinase.
    Gerwin BI; Stein WH; Moore S
    J Biol Chem; 1966 Jul; 241(14):3331-9. PubMed ID: 5913122
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of acetylation upon the activity of trypsin toward ester and amide substrates.
    Trenholm HL; Spomer WE; Wootton JF
    Biochemistry; 1969 Apr; 8(4):1741-7. PubMed ID: 5817159
    [No Abstract]   [Full Text] [Related]  

  • 7. The trypsin-catalyzed hydrolysis of some L-alpha-amino-lacking substrates.
    Kobayashi R; Ishii S
    J Biochem; 1974 Apr; 75(4):825-35. PubMed ID: 4858776
    [No Abstract]   [Full Text] [Related]  

  • 8. Nucleophilic selectivity in attack at amide bonds. Reactivity of oxygen and nitrogen nucleophiles with N-acetyldehydrophenylalanyl-L-proline diketopiperazine.
    Bruice TC; McMahon DM
    Biochemistry; 1972 Mar; 11(7):1273-8. PubMed ID: 5012979
    [No Abstract]   [Full Text] [Related]  

  • 9. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. 3. Determination of individual rate constants and enzyme-substrate binding constants for specific amide and ester substrates.
    Brandt KG; Himoe A; Hess GP
    J Biol Chem; 1967 Sep; 242(17):3973-82. PubMed ID: 6037555
    [No Abstract]   [Full Text] [Related]  

  • 10. STREPTOCOCCAL PROTEINASE: THE ZYMOGEN TO ENZYME TRANSFROMATION.
    LIU TY; ELLIOTT SD
    J Biol Chem; 1965 Mar; 240():1138-42. PubMed ID: 14284716
    [No Abstract]   [Full Text] [Related]  

  • 11. Reversibility of denaturation of the zymogen and the proteolyzed zymogen of streptococcal proteinase.
    Lin MC; Bustin M
    J Biol Chem; 1970 Jul; 245(13):3384-7. PubMed ID: 5459642
    [No Abstract]   [Full Text] [Related]  

  • 12. Demonstration of a change in the rate-determining step in papain- and ficin-catalyzed acyl-transfer reactions.
    Hinkle PM; Kirsch JF
    Biochemistry; 1971 Jul; 10(14):2717-26. PubMed ID: 5558694
    [No Abstract]   [Full Text] [Related]  

  • 13. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. V. Determination of pre-steady state kinetic parameters for specific substrate esters by stopped flow techniques.
    McConn J; Ku E; Himoe A; Brandt KG; Hess GP
    J Biol Chem; 1971 May; 246(9):2918-25. PubMed ID: 5554299
    [No Abstract]   [Full Text] [Related]  

  • 14. POLYMERIZATION REACTIONS CATALYZED BY INTRACELLULAR PROTEINASES. IV. FACTORS INFLUENCING THE POLYMERIZATION OF DIPEPTIDE AMIDES BY CATHEPSIN C.
    NILSSON KK; FRUTON JS
    Biochemistry; 1964 Sep; 3():1220-4. PubMed ID: 14229662
    [No Abstract]   [Full Text] [Related]  

  • 15. On the specificity of Pseudomonas aeruginosa alkaline proteinase with synthetic peptides.
    Morihara K; Tsuzuki H; Oka T
    Biochim Biophys Acta; 1973 Jun; 309(2):414-29. PubMed ID: 4199986
    [No Abstract]   [Full Text] [Related]  

  • 16. [Nature of the electron acceptor groups of peptide moleculas and their derivatives. I. Ethyl ester and amide of glycylglycine].
    Kuropteva ZV; Dovgiallo EN; Pulatova MK
    Biofizika; 1978; 23(3):405-10. PubMed ID: 27237
    [No Abstract]   [Full Text] [Related]  

  • 17. Modification of the amino group of isoleucine-16 in chymotrypsin with retention of activity.
    Agarwal SP; Martin CJ; Blair TT; Marini MA
    Biochem Biophys Res Commun; 1971 May; 43(3):510-5. PubMed ID: 5563303
    [No Abstract]   [Full Text] [Related]  

  • 18. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. II. Comparison of ester and amide substrates].
    Gurova AG; Ginodman LM; Antonov VK
    Mol Biol (Mosk); 1977; 11(5):1155-9. PubMed ID: 618342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the trypsin-catalyzed hydrolysis and ethanolysis of L-lysine methyl ester.
    Castañeda-Agulló M; Dávila G; Oliver C; Cruz T; Del Castillo LM
    Biochim Biophys Acta; 1969 Nov; 191(2):362-9. PubMed ID: 5354267
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.