These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 5348619)

  • 21. Gene expression profiles of the Southern house mosquito Culex quinquefasciatus during exposure to permethrin.
    Reid WR; Zhang L; Gong Y; Li T; Liu N
    Insect Sci; 2018 Jun; 25(3):439-453. PubMed ID: 28074632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of organophosphorus insecticides. IX. Distribution, excretion and metabolism of dimethoate Prodenia litura F.
    Zayed SM; Hassan A; Fakhr IM
    Biochem Pharmacol; 1968 Jul; 17(7):1339-47. PubMed ID: 5659779
    [No Abstract]   [Full Text] [Related]  

  • 23. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and -resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi.
    Perumalsamy H; Chang KS; Park C; Ahn YJ
    J Agric Food Chem; 2010 Sep; 58(18):10001-6. PubMed ID: 20806890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preliminary tests with a new insecticide (Baytex) on adults and larvae of Culex fatigans and Aedes aegypti.
    KELLETT FR; GILKES CD
    West Indian Med J; 1960 Sep; 9():201-6. PubMed ID: 13752336
    [No Abstract]   [Full Text] [Related]  

  • 25. Susceptibility status of Culex quinquefasciatus in Patna to insecticides.
    Mukhopadhyay AK; Sinha SN; Yadav RL; Narasimham MV
    Indian J Public Health; 1993; 37(2):57-60. PubMed ID: 8138290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Considerations on the relationship of larval and adult tolerance to insecticides in mosquitoes.
    Georghious GP
    Proc Pap Annu Conf Calif Mosq Control Assoc; 1970; 38():55-9. PubMed ID: 5489574
    [No Abstract]   [Full Text] [Related]  

  • 27. Exposure time versus concentration in the WHO standard test for mosquito resistance to chlorohydrocarbon insecticides.
    Ariaratnam V; Brown AW
    Bull World Health Organ; 1969 Apr; 40(4):561-7. PubMed ID: 5306721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The susceptibility of Culex pipiens fatigans to residual insecticides with particular reference to the Taveta-Pare area of East Africa.
    SMITH A; BRANSBY-WILLIAMS WR
    Bull World Health Organ; 1962; 27(4-5):603-7. PubMed ID: 13993106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Larval susceptibility status of Culex (culex) gelidus Theobald, against four organophosphorus compounds in Mysore City.
    Revanna MA; Vijayan VA; Ninge Gowda N
    J Commun Dis; 1991 Sep; 23(3):202-3. PubMed ID: 1725873
    [No Abstract]   [Full Text] [Related]  

  • 30. The susceptibility of Culex pipiens fatigans larvae to insecticides in Rangoon, Burma.
    Rosen P
    Bull World Health Organ; 1967; 37(2):301-10. PubMed ID: 4230023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of anti mosquito measures in households and resistance status of Culex species in urban areas in southern Ghana: implications for the sustainability of ITN use.
    Kudom AA; Mensah BA; Nunoo J
    Asian Pac J Trop Med; 2013 Nov; 6(11):859-64. PubMed ID: 24083580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inheritance of resistance to fenthion in Culex pipiens fatigans Wied.
    Dorval C; Brown AW
    Bull World Health Organ; 1970; 43(5):727-34. PubMed ID: 5313263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Susceptibility of larvae of Culex fatigans (Wiedmann), Anopheles stephensi (Liston) and Aedes aegypti (Linn.) to insecticides in Pondicherry.
    Das PK; Rajagopalan PK
    Indian J Med Res; 1979 Sep; 70():412-6. PubMed ID: 94038
    [No Abstract]   [Full Text] [Related]  

  • 34. Metabolism of insecticides by Culex pipiens quinquefasciatus. I. In vivo metabolism of DDT by larvae.
    Hooper GH
    J Econ Entomol; 1968 Apr; 61(2):490-3. PubMed ID: 5642115
    [No Abstract]   [Full Text] [Related]  

  • 35. CHEMICAL AND BIOLOGICAL BEHAVIOUR OF FENTHION RESIDUES.
    METCALF RL; FUKUTO TR; WINTON MY
    Bull World Health Organ; 1963; 29(2):219-26. PubMed ID: 14056274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insecticide tolerance of Culex nigripalpus in Florida.
    Boike AH; Rathburn CB; Floore TG; Rodriguez HM; Coughlin JS
    J Am Mosq Control Assoc; 1989 Dec; 5(4):522-8. PubMed ID: 2614401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The susceptibility of Culex pipiens fatigans Wiedemann larvae to insecticides in Malaya.
    THOMAS V
    Bull World Health Organ; 1962; 27(4-5):595-601. PubMed ID: 13981115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of organophophorus insecticides. VI. Mechanism of detoxification of Dipterex in the rat.
    Hassan A; Zayed SM; Hashish S
    Biochem Pharmacol; 1965 Nov; 14(11):1692-4. PubMed ID: 5867526
    [No Abstract]   [Full Text] [Related]  

  • 39. Evaluation of controlled release formulations of mosquito larvicides.
    Kalyanasundaram M; Reddy CM; Mariappan T; Das PK
    Indian J Med Res; 1984 Dec; 80():649-52. PubMed ID: 6085325
    [No Abstract]   [Full Text] [Related]  

  • 40. [Degradation regulation of fenthion and chlorfenvinfos combined pollutants in red soil].
    Wang LG; Jiang X; Mao YM; Su YR; Wu JS
    Huan Jing Ke Xue; 2005 Nov; 26(6):159-63. PubMed ID: 16447451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.