These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 5349383)

  • 1. Different binding of solvent to the peptide carbonyl group in different conformational environments induces the helix I is formed from helix II transition of poly L-proline.
    Strassmair H; Knof S; Engel J
    Hoppe Seylers Z Physiol Chem; 1969 Sep; 350(9):1153-4. PubMed ID: 5349383
    [No Abstract]   [Full Text] [Related]  

  • 2. The helix-coil transition of poly-L-lysine in methanol-water solvent mixtures.
    Epand RF; Scheraga HA
    Biopolymers; 1968; 6(9):1383-6. PubMed ID: 5669473
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational preferences of proline oligopeptides.
    Kang YK; Jhon JS; Park HS
    J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enthalpy change of the coil-helix transition of poly(gamma-benzyl L-glutamate) in dichloroacetic acid-1,2-dichloroethane mixtures.
    Kagemotto A; Fujishiro R
    Biopolymers; 1968; 6(12):1753-8. PubMed ID: 5704344
    [No Abstract]   [Full Text] [Related]  

  • 5. PMR chemical shifts of TFA in poly(gamma-bzyl L-glutamate) solutions.
    Liu KJ; Lignowski SJ
    Biopolymers; 1970; 9(6):739-44. PubMed ID: 5444132
    [No Abstract]   [Full Text] [Related]  

  • 6. Poly(phenylacetylene)s bearing a peptide pendant: helical conformational changes of the polymer backbone stimulated by the pendant conformational change.
    Maeda K; Kamiya N; Yashima E
    Chemistry; 2004 Aug; 10(16):4000-10. PubMed ID: 15317054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-helix formation by solvent-solvent interaction.
    Lotan N; Bixon M; Berger A
    Biopolymers; 1967 Jan; 5(1):69-77. PubMed ID: 6035931
    [No Abstract]   [Full Text] [Related]  

  • 8. Solvent-induced beta-hairpin to helix conformational transition in a designed peptide.
    Awasthi SK; Shankaramma SC; Raghothama S; Balaram P
    Biopolymers; 2001 Apr; 58(5):465-76. PubMed ID: 11241218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and conformational studies in solution of sequential copolypeptides: poly(L-prolyl-L-alpha-phenylglycyl-L-proline).
    Palumbo M; Rodin RL; Goodman M
    Biochemistry; 1975 Feb; 14(3):485-91. PubMed ID: 1115764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the binding properties of a synthetic anion receptor using rational and combinatorial strategies.
    Kubik S; Goddard R; Otto S; Pohl S; Reyheller C; Stüwe S
    Biosens Bioelectron; 2005 May; 20(11):2364-75. PubMed ID: 15797340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of poly(N5-(3-hydroxypropyl)-L-glutamine) with solvent components in water/dioxane mixtures.
    Inoue H; Izumi T
    Biopolymers; 1976 Apr; 15(4):797-812. PubMed ID: 1252607
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformational study of silk-like peptides containing the calcium-binding sequence from calbindin D9k using 13C CP/MAS NMR spectroscopy.
    Asakura T; Hamada M; Nakazawa Y; Ha SW; Knight DP
    Biomacromolecules; 2006 Feb; 7(2):627-34. PubMed ID: 16471940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of the cooperative transition between two ordered conformations of poly(L-proline). III. Molecular theory in the presence of solvent.
    Tanaka S; Scheraga HA
    Macromolecules; 1975; 8(4):516-21. PubMed ID: 1177497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio conformational study of N-acetyl-L-proline-N',N'-dimethylamide: a model for polyproline.
    Kee Kang Y; Sook Park H
    Biophys Chem; 2005 Jan; 113(1):93-101. PubMed ID: 15617814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic parameters of helix-coil transition in polypeptide chains. II. Poly-L-lysine.
    Barskaya TV; Ptitsyn OB
    Biopolymers; 1971 Nov; 10(11):2181-97. PubMed ID: 5118650
    [No Abstract]   [Full Text] [Related]  

  • 16. The solvation interface is a determining factor in peptide conformational preferences.
    Sorin EJ; Rhee YM; Shirts MR; Pande VS
    J Mol Biol; 2006 Feb; 356(1):248-56. PubMed ID: 16364361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent dependence of peptide carbonyl carbon chemical shifts and polypeptide secondary structure: the repeat tetrapeptide of elastin.
    Urry DW; Mitchell LW; Onishi T
    Biochem Biophys Res Commun; 1974 Jul; 59(1):62-9. PubMed ID: 4842293
    [No Abstract]   [Full Text] [Related]  

  • 18. Solvent dependence on conformational transition, dipole moment, and molecular geometry of 1,2-dichloroethane: insight from Car-Parrinello molecular dynamics calculations.
    Murugan NA; Hugosson HW; Agren H
    J Phys Chem B; 2008 Nov; 112(47):14673-7. PubMed ID: 18959438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational aspects of polypeptides. XXV. Solvent and temperature effects on the conformations of copolymers of benzyl and methyl L-aspartate with nitrobenzyl L-aspartate.
    Toniolo C; Falxa ML; Goodman M
    Biopolymers; 1968; 6(11):1579-603. PubMed ID: 5698903
    [No Abstract]   [Full Text] [Related]  

  • 20. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments.
    Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P
    J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.