These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5349610)

  • 1. Studies on the organization of the brush border in intestinal epithelial cells. VI. Glucose binding to isolated intestinal brush borders and their subfractions.
    Eichholz A; Howell KE; Crane RK
    Biochim Biophys Acta; 1969 Oct; 193(1):179-92. PubMed ID: 5349610
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for an intermediate step in carrier-mediated sugar translocation across the brush border membrane of hamster small intestine.
    Caspary WF; Stevenson NR; Crane RK
    Biochim Biophys Acta; 1969 Oct; 193(1):168-78. PubMed ID: 5349609
    [No Abstract]   [Full Text] [Related]  

  • 3. Glucose binding by intestinal brush borders of rats.
    Olsen WA; Rogers L
    Comp Biochem Physiol B; 1971 Jul; 39(3):617-25. PubMed ID: 4941538
    [No Abstract]   [Full Text] [Related]  

  • 4. Sodium-dependent binding of D-glucose to a filamentous fraction of Tris-disrupted brush borders from hamster jejunum.
    Faust RG; Shearin SJ; Misch DW
    Biochim Biophys Acta; 1972 Feb; 255(2):685-90. PubMed ID: 5057938
    [No Abstract]   [Full Text] [Related]  

  • 5. Active sugar transport by the small intestine. The effects of sugars, amino acids, hexosamines, sulfhydryl-reacting compounds, and cations on the preferential binding of D-glucose to tris-disrupted brush borders.
    Faust RG; Leadbetter MG; Plenge RK; McCaslin AJ
    J Gen Physiol; 1968 Sep; 52(3):482-94. PubMed ID: 5673303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal absorption in diabetes: binding of D-glucose to brush borders.
    Olsen WA; Rogers L
    Endocrinology; 1971 Nov; 89(5):1329-30. PubMed ID: 5097000
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the mechanism of active intestinal transport of glucose.
    Swaminathan N; Eichholz A
    Biochim Biophys Acta; 1973 Mar; 298(3):724-31. PubMed ID: 4716999
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport.
    Schedl HP; Wilson HD
    J Clin Invest; 1985 Nov; 76(5):1871-8. PubMed ID: 2997294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-glucose: preferential binding to brush borders disrupted with tris(hydroxymethyl)aminomethane.
    Faust RG; Wu SL; Faggard ML
    Science; 1967 Mar; 155(3767):1261-3. PubMed ID: 6018648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cations on D-glucose dissociation from tris-disrupted brush borders prepared from hamster jejunum.
    Faust RG; Leadbetter MG; Therrien EF
    Life Sci I; 1970 Nov; 9(21):1227-31. PubMed ID: 5477793
    [No Abstract]   [Full Text] [Related]  

  • 11. Sodium ion transport in isolated intestinal epithelial cells. II. Comparison of the effect of actively transported sugars on sodium ion efflux in cells isolated from jejunum and ileum.
    Gall DG; Chapman D
    Biochim Biophys Acta; 1976 Jan; 419(2):314-9. PubMed ID: 1247558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport of myo-inositol and its relation to the sugar transport system in hamster small intestine.
    Caspary WF; Crane RK
    Biochim Biophys Acta; 1970 Apr; 203(2):308-16. PubMed ID: 5441390
    [No Abstract]   [Full Text] [Related]  

  • 13. Preferential binding of amino acids to isolated mucosal brush borders from hamster jejunum.
    Burns MJ; Faust RG
    Biochim Biophys Acta; 1969; 183(3):642-5. PubMed ID: 5822833
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular weight of a D-glucose and L-histidine-binding protein from intestinal brush borders.
    Faust RG; Shearin SJ
    Nature; 1974 Mar; 248(5443):60-1. PubMed ID: 4818562
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of sodium, mannitol, and magnesium on glucose, galactose, 3-O-methylglucose, and fructose absorption in the human ileum.
    Bieberdorf FA; Morawski S; Fordtran JS
    Gastroenterology; 1975 Jan; 68(1):58-66. PubMed ID: 1116666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent binding of L-histidine to a fraction of mucosal brush borders from hamster jejunum.
    Faust RG; Burns MJ; Misch DW
    Biochim Biophys Acta; 1970 Dec; 219(2):507-11. PubMed ID: 5497210
    [No Abstract]   [Full Text] [Related]  

  • 17. A simple apparatus for performing short-time (1--2 seconds) uptake measurements in small volumes; its application to D-glucose transport studies in brush border vesicles from rabbit jejunum and ileum.
    Kessler M; Tannenbaum V; Tannenbaum C
    Biochim Biophys Acta; 1978 May; 509(2):348-59. PubMed ID: 656416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folate binding by the brush border membrane proteins of small intestinal epithelial cells.
    Leslie GI; Rowe PB
    Biochemistry; 1972 Apr; 11(9):1696-703. PubMed ID: 5028112
    [No Abstract]   [Full Text] [Related]  

  • 19. [Purification and properties of phosphoenolpyruvate-carboxylase of Euglena gracilis].
    Ohmann E; Plhák F
    Eur J Biochem; 1969 Aug; 10(1):43-55. PubMed ID: 5345984
    [No Abstract]   [Full Text] [Related]  

  • 20. Small intestinal phlorizin hydrolase: the "beta-glycosidase complex".
    Colombo V; Lorenz-Meyer H; Semenza G
    Biochim Biophys Acta; 1973 Dec; 327(2):412-24. PubMed ID: 4778942
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.