These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 535007)

  • 1. Comparison of lithium and sodium transports in primary cultures of dissociated brain cells.
    Szentistványi I; Janka Z; Rimanóczy A; Latzkovits L; Juhász A
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):315-21. PubMed ID: 535007
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of external sodium and potassium on lithium uptake by primary brain cell cultures at "therapeutic" lithium concentration.
    Janka Z; Szentistvanyi I; Rimanoczy A; Juhasz A
    Psychopharmacology (Berl); 1980; 71(2):159-63. PubMed ID: 6777816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-dependent Li-transport in primary nerve cell cultures.
    Szentistványi I; Janka Z; Joó F; Rimanóczy A; Juhász A; Latzkovits L
    Neurosci Lett; 1979 Jul; 13(2):157-61. PubMed ID: 575197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dependence of ion transport across the plasma membrane on cell culture density. II. Active and passive cation transport during the growth of L cell cultures].
    Marakhova II; Sal'nikov KV; Vinogradova TA
    Tsitologiia; 1985 Oct; 27(10):1156-63. PubMed ID: 2416101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Heavy water inhibition of alkali cation transport across the muscle membrane. II. A comparison of the action of D20 and ouabain on the sodium efflux and rubidium influx in magnesium media].
    Vereninov AA; Toropova FV; Ivakhniuk IS
    Tsitologiia; 1985 Dec; 27(12):1359-66. PubMed ID: 3003982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some observations of the mode of action of ouabain upon the electrical activity of mammalian retinas.
    Honda Y
    Invest Ophthalmol; 1972 Aug; 11(8):706-10. PubMed ID: 5044723
    [No Abstract]   [Full Text] [Related]  

  • 7. Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: a biochemical study.
    Richelson E
    Science; 1977 May; 196(4293):1001-2. PubMed ID: 860126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state distribution of lithium during cultivation of dissociated brain cells.
    Janka Z; Szentistványi I; Juhász A; Rimanóczy A
    Experientia; 1980 Sep; 36(9):1071-2. PubMed ID: 7418842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Furosemide-sensitive cation transport in frog skeletal muscle fibers].
    Vinogradova TA; Marakhova II
    Tsitologiia; 1988 Oct; 30(10):1200-7. PubMed ID: 2469239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of bumetanide and ouabain on lithium transport in the distal nephron of dogs.
    Stokke ES; Ostensen J; Kiil F
    Kidney Int Suppl; 1990 Mar; 28():S71-4. PubMed ID: 2325338
    [No Abstract]   [Full Text] [Related]  

  • 11. Proceedings: Lithium, sodium and potassium fluxes in frog skeletal muscle.
    Smith IC
    J Physiol; 1974 Oct; 242(2):99P-101P. PubMed ID: 4455858
    [No Abstract]   [Full Text] [Related]  

  • 12. Cellular sodium transport in essential hypertension.
    Hilton PJ
    N Engl J Med; 1986 Jan; 314(4):222-9. PubMed ID: 3001524
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics of ouabain binding and changes in cellular sodium content, 42K+ transport and contractile state during ouabain exposure in cultured chick heart cells.
    Kim D; Barry WH; Smith TW
    J Pharmacol Exp Ther; 1984 Nov; 231(2):326-33. PubMed ID: 6092615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further studies of hormone-sensitive sodium and potassium transport in red cells from developing chick embryos.
    Shanbaky NM; Wacholtz MC; Sha'afi RI
    J Cell Physiol; 1981 May; 107(2):303-8. PubMed ID: 6265478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cation transport in murine L fibroblasts cultured long term in a serum-free medium].
    Pashinin IuV; Vinogradova TA; Ignatova TN; Marakhova II
    Tsitologiia; 1988 Mar; 30(3):276-82. PubMed ID: 2842900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium and the transfer rate of sodium across the blood-brain barrier.
    Amdisen A; Schou M
    Psychopharmacologia; 1968; 12(3):236-8. PubMed ID: 5747904
    [No Abstract]   [Full Text] [Related]  

  • 17. [Cation transport and content in serum-stimulated CHO-773 cells. I. Rapid changes in rubidium and lithium influxes and intracellular sodium content].
    Marakhova II; Efimova EV; Vinogradova TA
    Tsitologiia; 1987 Jan; 29(1):59-65. PubMed ID: 2436368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline uptake in nerve cell cultures.
    Massarelli R; Sensenbrenner M; Ebel A; Mandel P
    Neurobiology; 1974; 4(5):293-300. PubMed ID: 4421301
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of effects of a low extracellular potassium concentration and cardiac glycoside on contractility, monovalent cation transport, and Na-Ca exchange in cultured ventricular cells.
    Barry WH; Liechty L; Beaudoin D; Smith TW
    Trans Assoc Am Physicians; 1982; 95():12-21. PubMed ID: 6304971
    [No Abstract]   [Full Text] [Related]  

  • 20. [Cation transport and content in serum-stimulated CHO-773 cells. III. The intracellular content of sodium, calcium and magnesium].
    Marakhova II; Vinogradova TA; Efimova EV
    Tsitologiia; 1987 Mar; 29(3):315-20. PubMed ID: 2438831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.