These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 535028)

  • 1. Neurite complexes with Merkel cells in larval tentacles of Xenopus laevis.
    Ovalle WK
    Cell Tissue Res; 1979 Dec; 204(2):233-41. PubMed ID: 535028
    [No Abstract]   [Full Text] [Related]  

  • 2. The development of the Merkel cells in the tentacles of Xenopus laevis larvae.
    Eglmeier W
    Anat Embryol (Berl); 1987; 176(4):493-500. PubMed ID: 3688453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lateral line system at metamorphosis in Xenopus laevis (Daudin).
    Shelton PM
    J Embryol Exp Morphol; 1970 Nov; 24(3):511-24. PubMed ID: 5493274
    [No Abstract]   [Full Text] [Related]  

  • 4. Scanning electron microscopy of aggregates of cells from normal embryos and lithium-induced exogastrulae of Xenopus laevis.
    Stanisstreet M; Smith JL
    Acta Embryol Exp (Palermo); 1978; (1):3-12. PubMed ID: 685629
    [No Abstract]   [Full Text] [Related]  

  • 5. Observation of Merkel cells with scanning electron microscopy.
    Yamashita Y; Toida K; Ogawa H
    Neurosci Lett; 1993 Sep; 159(1-2):155-8. PubMed ID: 7505411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval epidermis of the red eye tree frog Agalychnis callidryas (Anura, Hylidae): ultrastructural investigation on the Kugelzellen, specialized forms of the constitutive skein cell line.
    Giachi F; Tanteri G; Malentacchi C; Delfino G
    Anat Rec (Hoboken); 2011 Sep; 294(9):1601-10. PubMed ID: 21809457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of heat shock on the morphology and protein synthesis of the epidermis of Xenopus laevis larvae.
    Nickells RW; Cavey MJ; Browder LW
    J Cell Biol; 1988 Mar; 106(3):905-14. PubMed ID: 3346329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and function of the lateral line system in larval Xenopus laevis.
    Shelton PM
    J Exp Zool; 1971 Oct; 178(2):211-31. PubMed ID: 5114041
    [No Abstract]   [Full Text] [Related]  

  • 9. Merkel cells and the mechanosensitivity of normal and regenerating nerves in Xenopus skin.
    Mearow KM; Diamond J
    Neuroscience; 1988 Aug; 26(2):695-708. PubMed ID: 3173695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod-shaped particles in the plasma membrane of the mitochondria-rich cell of amphibian epidermis.
    Brown D; Ilic V; Orci L
    Anat Rec; 1978 Oct; 192(2):269-75. PubMed ID: 717800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is the Merkel cell a secondary sensory cell? (A contribution to the classification of merkel cell neurite complexes).
    Malinovský L; Pác L
    Z Mikrosk Anat Forsch; 1985; 99(1):119-28. PubMed ID: 3887789
    [No Abstract]   [Full Text] [Related]  

  • 12. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin).
    HUGHES A
    J Embryol Exp Morphol; 1961 Jun; 9():269-84. PubMed ID: 13716620
    [No Abstract]   [Full Text] [Related]  

  • 14. On the development of the blood island in Xenopus laevis embryos: light and electron microscope study.
    Mangia F; Procicchiami G; Manelli H
    Acta Embryol Exp (Palermo); 1970; 2():163-84. PubMed ID: 5495675
    [No Abstract]   [Full Text] [Related]  

  • 15. Contribution to ontogenesis of Merkel cells.
    Pác L
    Z Mikrosk Anat Forsch; 1984; 98(1):36-48. PubMed ID: 6720019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface ultrastructure of pit organ, spectacle, and non pit organ epidermis of infrared imaging boid snakes: A scanning probe and scanning electron microscopy study.
    Campbell AL; Bunning TJ; Stone MO; Church D; Grace MS
    J Struct Biol; 1999 Jun; 126(2):105-20. PubMed ID: 10388622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians.
    Cooke J
    J Embryol Exp Morphol; 1975 Feb; 33(1):147-57. PubMed ID: 1151264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy.
    Schroeder TE
    J Embryol Exp Morphol; 1970 Apr; 23(2):427-62. PubMed ID: 5449482
    [No Abstract]   [Full Text] [Related]  

  • 19. Melanogenesis in amphibians. 3. The buoyant density of oocyte and larval xenopus laevis melanosomes and the isolation of oocyte melanosomes from the eyes of PTU-treated larvae.
    Eppig JJ
    J Exp Zool; 1970 Dec; 175(4):467-75. PubMed ID: 5501464
    [No Abstract]   [Full Text] [Related]  

  • 20. Riesenzellen, goblet cells, Leydig cells and the large clear cells of Xenopus, in the amphibian larval epidermis: fine structure and a consideration of their homology.
    Fox H
    J Submicrosc Cytol Pathol; 1988 Apr; 20(2):437-51. PubMed ID: 3135114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.