These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 5350449)

  • 21. Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata.
    Yen HC; Marrs B
    J Bacteriol; 1976 May; 126(2):619-29. PubMed ID: 1262313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of the intracytoplasmic membrane of Rhodopseudomonas palustris induced by variations of oxygen partial pressure or light intensity.
    Firsow NN; Drews G
    Arch Microbiol; 1977 Dec; 115(3):299-306. PubMed ID: 603338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The participation of the Shemin and C5 pathways in 5-aminolaevulinate and chlorophyll formation in higher plants and facultative photosynthetic bacteria.
    Klein O; Porra RJ
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):551-62. PubMed ID: 7106702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor.
    Dutton PL; Leigh JS; Reed DW
    Biochim Biophys Acta; 1973 Apr; 292(3):654-64. PubMed ID: 4350260
    [No Abstract]   [Full Text] [Related]  

  • 25. Nitrogen-limited continuous culture of Rhodopseudomonas capsulata growing photosynthetically or heterotrophically under low oxygen tensions.
    Dierstein R; Drews G
    Arch Microbiol; 1974; 99(2):117-28. PubMed ID: 4604821
    [No Abstract]   [Full Text] [Related]  

  • 26. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

  • 27. P700 oxidation and energy transfer in normal maize and in carotenoid-deficient mutants.
    Faludi-Dániel A; Amesz J; Nagy AH
    Biochim Biophys Acta; 1970 Jan; 197(1):60-8. PubMed ID: 5412034
    [No Abstract]   [Full Text] [Related]  

  • 28. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity.
    Zhou Q; Zhang P; Zhang G
    Bioresour Technol; 2014 Nov; 171():330-5. PubMed ID: 25218205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of membrane proteins coupled to bacteriochlorophyll synthesis. Studies with wild type and mutant strains of Rhodopseudomonas spheroides.
    Takemoto J; Lascelles J
    Arch Biochem Biophys; 1974 Aug; 163(2):507-14. PubMed ID: 4547213
    [No Abstract]   [Full Text] [Related]  

  • 30. Control of composition and activity of the photosynthetic apparatus of Rhodopseudomonas capsulata grown in ammonium-limited continuous culture.
    Dierstein R; Drews G
    Arch Microbiol; 1975 Dec; 106(3):227-35. PubMed ID: 1217939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides: possible role of heme in regulation of the branched biosynthetic pathway.
    Lascelles J; Hatch TP
    J Bacteriol; 1969 May; 98(2):712-20. PubMed ID: 5784220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of membrane composition in growing photosynthetic bacteria.
    Steiner S; Sejka GA; Conti SF; Gest H; Lester RL
    Biochim Biophys Acta; 1970 Jun; 203(3):571-4. PubMed ID: 5523748
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on the adaptive formation of photosynthetic structures in Rhodopseudomonas spheroides. I. Synthesis of macromolecules.
    Gray ED
    Biochim Biophys Acta; 1967 May; 138(3):550-63. PubMed ID: 6036850
    [No Abstract]   [Full Text] [Related]  

  • 34. Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells.
    Gorchein A
    Biochem J; 1972 Mar; 127(1):97-106. PubMed ID: 4627449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochemical electron transport in photosynthetic reaction centers. IV. Observations related to the reduced photoproducts.
    Clayton RK; Straley SC
    Biophys J; 1972 Oct; 12(10):1221-34. PubMed ID: 4538554
    [No Abstract]   [Full Text] [Related]  

  • 36. Coupling between bacteriochlorophyll and membrane protein synthesis in Rhodopseudomonas spheroides.
    Takemoto J; Lascelles J
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):799-803. PubMed ID: 4541415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-linked electron transfer reactions in Rhodopseudomonas viridis.
    Jones OT; Saunders VA
    Biochim Biophys Acta; 1972 Sep; 275(3):427-36. PubMed ID: 4403603
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheroides. 5. Zinc-protoporphyrin chelatase.
    Neuberger A; Tait GH
    Biochem J; 1964 Mar; 90(3):607-16. PubMed ID: 5833368
    [No Abstract]   [Full Text] [Related]  

  • 39. Further evidence for dissipative energy migration via triplet states in photosynthesis. The protective mechanism of carotenoids in Rhodopseudomonas spheroides chromatophores.
    Renger G; Wolff C
    Biochim Biophys Acta; 1977 Apr; 460(1):47-57. PubMed ID: 300630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The spectrum of bacteriochlorophyll in vivo: observations on mutants of Rhodopseudomonas spheroides unable to grow photosynthetically.
    Sistrom WR
    Photochem Photobiol; 1966; 5(11):845-56. PubMed ID: 5979507
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.