These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 5352044)

  • 1. Accumulation of caesium and rubidium in vivo by red and white muscles of the rat.
    Kernan RP
    J Physiol; 1969 Sep; 204(1):195-205. PubMed ID: 5352044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of caesium uptake by rat soleus and vastus lateralis muscles in vivo and of its efflux rate relative to potassium in vitro.
    Kernan RP
    Pflugers Arch; 1972; 333(2):95-110. PubMed ID: 5065512
    [No Abstract]   [Full Text] [Related]  

  • 3. The inhibitory actions of eserine and ouabain on the K, Rb and Cs uptake in slow and fast twitch muscles of the rat.
    Pfliegler G; Kovács T; Szabó B
    Acta Physiol Acad Sci Hung; 1981; 57(4):317-28. PubMed ID: 6977257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubidium influx into rat skeletal muscles in relation to electrical activity.
    Kernan RP; McDermott M
    J Physiol; 1973 Sep; 233(2):363-74. PubMed ID: 4747232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes.
    Györgyi S; Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The exchange of potassium for caesium and rubidium in frog muscle.
    LUBIN M; SCHNEIDER PB
    J Physiol; 1957 Aug; 138(1):140-55. PubMed ID: 13463803
    [No Abstract]   [Full Text] [Related]  

  • 9. The effects of thyroid hormones on 3H-ouabain binding site concentration, Na,K-contents and 86Rb-efflux in rat skeletal muscle.
    Kjeldsen K; Everts ME; Clausen T
    Pflugers Arch; 1986 May; 406(5):529-35. PubMed ID: 3714451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of caesium in frog muscle.
    Beaugé LA; Sjodin RA
    J Physiol; 1968 Jan; 194(1):105-23. PubMed ID: 5639758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selectivity of the delayed potassium conductance of frog skeletal muscle fibers.
    Gay LA; Stanfield PR
    Pflugers Arch; 1978 Dec; 378(2):177-9. PubMed ID: 569840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of potassium, rubidium and caesium (133Cs and 137Cs in various fractions of soil and fungi in a Swedish forest.
    Vinichuk M; Taylor AF; Rosén K; Johanson KJ
    Sci Total Environ; 2010 May; 408(12):2543-8. PubMed ID: 20334900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid exchange of cellular K+, Rb+, and Cs+ and its relation to the resting potential of guinea pig papillary muscle cells.
    Edelmann L; Edelmann H; Baldauf JH
    Physiol Chem Phys; 1974; 6(5):429-44. PubMed ID: 4449897
    [No Abstract]   [Full Text] [Related]  

  • 14. Block and activation of the pace-maker channel in calf purkinje fibres: effects of potassium, caesium and rubidium.
    DiFrancesco D
    J Physiol; 1982 Aug; 329():485-507. PubMed ID: 6292407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical analysis of muscle fibre types from four human skeletal muscles.
    Khan MA; Khan N
    Anat Anz; 1978; 144(3):246-56. PubMed ID: 742717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hyperthyroidism on capillarity and oxidative capacity in rat soleus and gastrocnemius muscles.
    Capó LA; Sillau AH
    J Physiol; 1983 Sep; 342():1-14. PubMed ID: 6226777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.
    Dulhunty AF
    J Physiol; 1978 Mar; 276():67-82. PubMed ID: 650497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation accumulation by muscle tissue: the displacement of potassium by rubidium and cesium in the living animal.
    RELMAN AS; LAMBIE AT; BURROWS BA; ROY AM
    J Clin Invest; 1957 Aug; 36(8):1249-56. PubMed ID: 13463088
    [No Abstract]   [Full Text] [Related]  

  • 19. Rubidium and cesium fluxes in muscle as related to the membrane potential.
    SJODIN RA
    J Gen Physiol; 1959 May; 42(5):983-1003. PubMed ID: 13654746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Content, distribution and chemical state of sodium, potassium, rubidium and cesium in different tissues of the white rat].
    Skul'skiĭ IA; Leont'ev VG; Burovina IV
    Izv Akad Nauk SSSR Biol; 1968; 1(6):831-7. PubMed ID: 5760569
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.