These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 5352327)

  • 1. [Specificity of sugar binding to erythrocyte membrane fractions].
    Zimmer G; Lacko L
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1169. PubMed ID: 5352327
    [No Abstract]   [Full Text] [Related]  

  • 2. Different binding sites for glucose and sorbose at the erythrocyte membrane, studied by gel filtration and infrared spectroscopy.
    Zimmer G; Lacko L; Günther H
    J Membr Biol; 1972; 9(4):305-18. PubMed ID: 4674401
    [No Abstract]   [Full Text] [Related]  

  • 3. Failure of equilibrium dialysis to show selective monosaccharide binding by erythrocyte membranes.
    Masiak SJ; LeFevre PG
    J Membr Biol; 1972; 9(3):291-6. PubMed ID: 5085304
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of temperature on the competitive inhibition of sorbose transfer in human erythrocytes by glucose.
    Levine M; Levine S; Jones MN
    Biochim Biophys Acta; 1971 Feb; 225(2):291-300. PubMed ID: 5552812
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inactivation by fluorodinitrobenzene of glucose transport across the human erythrocyte membrane. The effect of glucose inside or outside the cell.
    Edwards PA
    Biochim Biophys Acta; 1973 May; 307(2):415-8. PubMed ID: 4711194
    [No Abstract]   [Full Text] [Related]  

  • 7. Facilitated transfer of hexoses across the human erythrocyte membrane.
    WIDDAS WF
    J Physiol; 1954 Jul; 125(1):163-80. PubMed ID: 13192763
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of chlorpromazine on hexose penetration in the human erythrocyte.
    Baker GF; Rogers HJ
    Br J Pharmacol; 1973 Mar; 47(3):655P. PubMed ID: 4730865
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence from studies of temperature-dependent changes of D-glucose, D-mannose and L-sorbose permeability that different states of activation of the human erythrocyte hexose transporter exist for good and bad substrates.
    Naftalin RJ
    Biochim Biophys Acta; 1997 Aug; 1328(1):13-29. PubMed ID: 9298941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A re-examination of Stein's dimer theory of sugar transport in human erythrocytes.
    Miller DM
    Biochim Biophys Acta; 1966 May; 120(1):156-8. PubMed ID: 5961100
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands.
    Naftalin RJ
    Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane.
    Levine M; Oxender DL; Stein WD
    Biochim Biophys Acta; 1965 Sep; 109(1):151-63. PubMed ID: 5864008
    [No Abstract]   [Full Text] [Related]  

  • 13. An explanation of the asymmetric binding of sugars to the human erythrocyte sugar-transport systems.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Nov; 135(3):539-41. PubMed ID: 4772277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further effects of chlorpromazine on the hexose permeability of the human erythrocyte.
    Baker GF; Rogers HJ
    J Physiol; 1973 Aug; 232(3):597-608. PubMed ID: 4759682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Different influence of glucose and sorbose and erythrocyte membrane lipid transition.
    Zimmer G; Schirmer H
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1273. PubMed ID: 4461628
    [No Abstract]   [Full Text] [Related]  

  • 16. Sugar retention, cofactor levels, and leakage of metabolites in x-irradiated, starved yeast cells.
    Doyle RJ; Spoerl E
    Radiat Res; 1968 May; 34(2):326-34. PubMed ID: 4384802
    [No Abstract]   [Full Text] [Related]  

  • 17. The kinetic parameters of the monosaccharide transfer system of the human erythrocyte.
    Levine M; Stein WD
    Biochim Biophys Acta; 1966 Sep; 127(1):179-93. PubMed ID: 5970872
    [No Abstract]   [Full Text] [Related]  

  • 18. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utilization of L-sorbose by Agaricus macrosporus (Moell. et J. Schaeff) Pilát.
    Bohus G
    Acta Biol Acad Sci Hung; 1967; 18(4):387-401. PubMed ID: 5628898
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.