These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5354766)

  • 1. The metabolism of tartaric acid by Penicillium charlesii.
    Klatt KP; Rick PD; Gander JE
    Arch Biochem Biophys; 1969 Nov; 134(2):335-45. PubMed ID: 5354766
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of metabolism in Penicillium charlesii by organic acids: role of L-tartaric acid.
    Gander JE; Janovec S
    Curr Top Cell Regul; 1984; 24():99-109. PubMed ID: 6499526
    [No Abstract]   [Full Text] [Related]  

  • 3. Tartaric acid metabolism. 3. The formation of glyceric acid.
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2465-71. PubMed ID: 4297259
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the biochemistry of Penicillium charlesii. Influence of various dicarboxylic acids on galactocarolose synthesis.
    Jordan JM; Gander JE
    Biochem J; 1966 Sep; 100(3):694-701. PubMed ID: 5969282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tartaric acid metabolism. VI. Crystalline oxaloglycolate reductive decarboxylase.
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2486-93. PubMed ID: 4385076
    [No Abstract]   [Full Text] [Related]  

  • 6. A new uracil nucleoside from Penicillium charlesii.
    Maynard DE; Gander JE
    Biochim Biophys Acta; 1966 Jan; 115(1):54-8. PubMed ID: 5936243
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for uridine 5'-( -D-galactopyranosyl pyrophosphate):NAD 2-hexosyl oxidoreductase in Penicillium charlesii.
    Fobes WS; Gander JE
    Biochem Biophys Res Commun; 1972 Oct; 49(1):76-83. PubMed ID: 5077860
    [No Abstract]   [Full Text] [Related]  

  • 8. Tartaric acid metabolism. VII. Crystalline hydroxypyruvate reductase (D-glycerate dehydrogenase).
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2494-9. PubMed ID: 4385077
    [No Abstract]   [Full Text] [Related]  

  • 9. The pyruvate-aspartic semialdehyde condensing enzyme of Escherichia coli.
    Shedlarski JG; Gilvarg C
    J Biol Chem; 1970 Mar; 245(6):1362-73. PubMed ID: 4910051
    [No Abstract]   [Full Text] [Related]  

  • 10. ALCOHOL HYPOGLYCEMIA. II. A POSTULATED MECHANISM OF ACTION BASED ON EXPERIMENTS WITH RAT LIVER SLICES.
    FREINKEL N; COHEN AK; ARKY RA; FOSTER AE
    J Clin Endocrinol Metab; 1965 Jan; 25():76-94. PubMed ID: 14252290
    [No Abstract]   [Full Text] [Related]  

  • 11. Factors influencing tartrate uptake by Penicillium charlesii.
    Klatt KP; Gander JE
    Can J Microbiol; 1968 May; 14(5):579-85. PubMed ID: 5665979
    [No Abstract]   [Full Text] [Related]  

  • 12. Biosynthesis of amino acids from 14C-U glucose, pyruvate, and acetate by erythrocytic forms of P. knowlesi, in vitro.
    Polet H; Brown ND; Angel CR
    Proc Soc Exp Biol Med; 1969 Sep; 131(4):1215-8. PubMed ID: 5811977
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of Plasmodium berghei. 3. Carbon dioxide fixation and role of pyruvate and dicarboxylic acids.
    Nagarajan K
    Exp Parasitol; 1968 Feb; 22(1):33-42. PubMed ID: 5643357
    [No Abstract]   [Full Text] [Related]  

  • 14. Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase.
    Kohn LD; Packman PM; Allen RH; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2479-85. PubMed ID: 4297261
    [No Abstract]   [Full Text] [Related]  

  • 15. THE METABOLISM OF TARTARIC ACID BY A PSEUDOMONAS. A NEW PATHWAY.
    DAGLEY S; TRUDGILL PW
    Biochem J; 1963 Oct; 89(1):22-31. PubMed ID: 14097362
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthesis of nitro compounds. II. Studies on potential precursors for the nitro group of beta-nitropropionic acid.
    Shaw PD; McCloskey JA
    Biochemistry; 1967 Jul; 6(7):2247-60. PubMed ID: 6058115
    [No Abstract]   [Full Text] [Related]  

  • 17. Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii.
    Buchanan BB; Pine L
    J Gen Microbiol; 1967 Feb; 46(2):225-36. PubMed ID: 6029732
    [No Abstract]   [Full Text] [Related]  

  • 18. Tritium incorporation and retention in photosynthesizing algae.
    Rambeck WA; Bassham JA
    Biochim Biophys Acta; 1973 May; 304(3):725-35. PubMed ID: 4199343
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of organic acids by Thiobacillus neapolitanus.
    Kelly DP
    Arch Mikrobiol; 1970; 73(2):177-92. PubMed ID: 5487433
    [No Abstract]   [Full Text] [Related]  

  • 20. Utilization of acetate, pyruvate, and CO2 by Penicillium digitatum.
    NOBLE EP; REED DR; WANG CH
    Can J Microbiol; 1958 Oct; 4(5):469-76. PubMed ID: 13573231
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.