These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 5354934)

  • 21. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid.
    Hughes J; Mellows G
    Biochem J; 1978 Oct; 176(1):305-18. PubMed ID: 365175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase.
    Alexander RR; Calvo JM; Freundlich M
    J Bacteriol; 1971 Apr; 106(1):213-20. PubMed ID: 4928008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of branched-chain amino acids in yeast: regulation of synthesis of the enzymes of isoleucine and valine biosynthesis.
    Bussey H; Umbarger HE
    J Bacteriol; 1969 May; 98(2):623-8. PubMed ID: 5784215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of biosynthesis of aminoacyl-transfer RNA synthetases and of transfer-RNA in Escherichia coli.
    Morgan S; Larossa R; Cheung A; Low B; Söll D
    Arch Biol Med Exp; 1979 Oct; 12(3):415-26. PubMed ID: 45219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of mupirocin transport into sensitive and resistant bacteria.
    Capobianco JO; Doran CC; Goldman RC
    Antimicrob Agents Chemother; 1989 Feb; 33(2):156-63. PubMed ID: 2497702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of arginine biosynthesis in Escherichia coli: role of arginyl-transfer ribonucleic acid synthetase in repression.
    Williams LS
    J Bacteriol; 1973 Mar; 113(3):1419-32. PubMed ID: 4570785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium.
    O'Neill JP; Freundlich M
    J Bacteriol; 1972 Aug; 111(2):510-5. PubMed ID: 4559733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate.
    Lõvgren TN; Heinonen J; Loftfield RB
    J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of branched-chain amino acid biosynthesis.
    Szentirmai A; Horváth I
    Acta Microbiol Acad Sci Hung; 1976; 23(2):137-49. PubMed ID: 788468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoleucyl transfer ribonucleic acid synthetase. Competitive inhibition with respect to transfer ribonucleic acid by blue dextran.
    Moe JG; Piszkiewicz D
    Biochemistry; 1979 Jun; 18(13):2810-4. PubMed ID: 383141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of threonine deaminase in repression of the isoleucine-valine and leucine pathways in Saccharomyces cerevisiae.
    Bollon AP; Magee PT
    J Bacteriol; 1973 Mar; 113(3):1333-44. PubMed ID: 4570783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenylalanyl-tRNA synthetase and isoleucyl-tRNA Phe : a possible verification mechanism for aminoacyl-tRNA.
    Yarus M
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1915-9. PubMed ID: 4558664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of threonine deaminase in multivalent repression of the isoleucine-valine pathway in Saccharomyces cerevisiae.
    Bollon AP; Magee PT
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2169-72. PubMed ID: 4943789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical characterization of a mutant isoleucyl-transfer ribonucleic acid synthetase from Escherichia coli K-12.
    Treiber G; Iaccarino M
    J Bacteriol; 1971 Sep; 107(3):828-32. PubMed ID: 4328754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations.
    Takeda Y; Ohnishi T; Ogiso Y
    J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies of the interaction between aminoacyl-tRNA synthetase and transfer ribonucleic acid by equilibrium partition.
    Hustedt H; Kula MR
    Eur J Biochem; 1977 Mar; 74(1):191-8. PubMed ID: 323006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase.
    Baer M; Low KB; Söll D
    J Bacteriol; 1979 Jul; 139(1):165-75. PubMed ID: 378953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of adenosine triphosphate and magnesium chloride on affinity elution of aminoacyl-transfer ribonucleic acid synthetases from phosphocellulose with transfer ribonucleic acids.
    Yamada H
    J Biochem; 1978 Jun; 83(6):1577-81. PubMed ID: 353039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.