These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5354939)

  • 1. Methyl-deficient transfer ribonucleic acid and macromolecular synthesis in methionine-starved Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1969 Nov; 100(2):679-86. PubMed ID: 5354939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of methionine pool composition on the formation of methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Kjellin-Stråby K
    J Bacteriol; 1969 Nov; 100(2):687-94. PubMed ID: 5354940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Phillips JH
    J Bacteriol; 1969 Nov; 100(2):695-700. PubMed ID: 5354941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on microbial ribonucleic acid. VI. Appearance of methyl-deficient transfer ribonucleic acid during logarithmic growth of Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1968 Sep; 96(3):760-7. PubMed ID: 5732508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecule synthesis in yeast spheroplasts.
    Hutchison HT; Hartwell LH
    J Bacteriol; 1967 Nov; 94(5):1697-705. PubMed ID: 6066050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between methionyl transfer ribonucleic acid cellular content and synthesis of methionine enzymes in Saccharomyces cerevisiae.
    Surdin-Kerjan Y; Cherest H; Robichon-Szulmajster H
    J Bacteriol; 1973 Mar; 113(3):1156-60. PubMed ID: 4570771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetate utilization and macromolecular synthesis during sporulation of yeast.
    Esposito MS; Esposito RE; Arnaud M; Halvorson HO
    J Bacteriol; 1969 Oct; 100(1):180-6. PubMed ID: 5344095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N-2-dimethylguanine in soluble ribonucleic acid.
    Phillips JH; Kjellin-Stråby K
    J Mol Biol; 1967 Jun; 26(3):509-18. PubMed ID: 6029741
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of specific transfer ribonucleic acids during methionine starvation in Escherichia coli 113-3.
    Huang HH; Fenrych W; Pawelkiewicz J; Johnson BC
    J Mol Biol; 1971 Jul; 59(2):307-18. PubMed ID: 4935787
    [No Abstract]   [Full Text] [Related]  

  • 11. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media.
    Wehr CT; Parks LW
    J Bacteriol; 1969 May; 98(2):458-66. PubMed ID: 5784205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae.
    Knudsen RC; Moore K; Yall I
    J Bacteriol; 1969 May; 98(2):629-36. PubMed ID: 5784216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The methylation of transfer ribonucleic acid during regeneration of the liver.
    Tidwell T
    J Cell Biol; 1970 Aug; 46(2):370-8. PubMed ID: 5449182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phosphatidylcholine biosynthesis in Saccharomyces cerevisiae.
    Waechter CJ; Lester RL
    J Bacteriol; 1971 Mar; 105(3):837-43. PubMed ID: 5547992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the methylation in vivo of ribosomal RNA in yeast.
    Retèl J; van den Bos RC; Planta RJ
    Biochim Biophys Acta; 1969 Dec; 195(2):370-80. PubMed ID: 5366926
    [No Abstract]   [Full Text] [Related]  

  • 16. A formylatable methionine transfer ribonucleic acid from yeast: comparison of coding properties and sequences around the anticodon with Escherichia coli formylatable methionine transfer RNA.
    RajBhandary UL; Kumar A
    J Mol Biol; 1970 Jun; 50(3):707-11. PubMed ID: 5477344
    [No Abstract]   [Full Text] [Related]  

  • 17. Methionine-dependent synthesis of ribosomal ribonucleic acid during sporulation and vegetative growth of Saccharomyces cerevisiae.
    Wejksnora PJ; Haber JE
    J Bacteriol; 1974 Dec; 120(3):1344-55. PubMed ID: 4612017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of homocysteine synthetase in an alternate route for methionine biosynthesis in Saccharomyces cerevisiae.
    Cherest H; Talbot G; Robichon-Szulmajster H
    J Bacteriol; 1970 May; 102(2):448-61. PubMed ID: 5419261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionyl-transfer ribonucleic acid deficiency during G1 arrest of Saccharomyces cerevisiae.
    Unger MW
    J Bacteriol; 1977 Apr; 130(1):11-9. PubMed ID: 323218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal precursor RNA in Saccharomyces carlsbergensis.
    Retèl J; Planta RJ
    Eur J Biochem; 1967 Dec; 3(2):248-58. PubMed ID: 6082612
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.