BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 5357026)

  • 1. The stereochemistry of hydrogen elimination at C-7,C-22 and C-23 during the conversion of cholesterol (cholest-5-en-3 beta-ol) into cholesta-5,7,22-trien-3 beta-ol by Tetrahymena pyriformis.
    Bimpson T; Goad LJ; Goodwin TW
    Biochem J; 1969 Dec; 115(4):857-8. PubMed ID: 5357026
    [No Abstract]   [Full Text] [Related]  

  • 2. The stereochemistry of hydrogen elimination during 7,8-double bond formation by Tetrahymena pyriformis.
    Wilton DC; Akhtar M
    Biochem J; 1970 Feb; 116(3):337-9. PubMed ID: 5435681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conversion of cholesterol to delta-5,7,22-cholestatrien-3-beta-ol by Tetrahymena pyriformis.
    Conner RL; Mallory FB; Landrey JR; Iyengar CW
    J Biol Chem; 1969 May; 244(9):2325-33. PubMed ID: 5783836
    [No Abstract]   [Full Text] [Related]  

  • 4. Sterol synthesis: studies of the metabolism of 14 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol.
    Chan JT; Spike TE; Trowbridge ST; Schroepfer GJ
    J Lipid Res; 1979 Nov; 20(8):1007-19. PubMed ID: 533823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stereochemistry of hydrogen elimination in the biological conversion of 5 alpha-cholest-8-en-3 beta-ol to 5 alpha-cholest-7-en-3 beta-ol.
    Canonica L; Fiecchi A; Galli Kienle M; Scala A
    Steroids; 1968 Jun; 11(6):749-53. PubMed ID: 5671483
    [No Abstract]   [Full Text] [Related]  

  • 6. 5 Alpha-cholest-8(14)-en-3 beta-ol, a possible intermediate in the biosynthesis of cholesterol. Enzymatic conversion to cholesterol and isolation from rat skin.
    Lee WH; Lutsky BN; chropfer GJ
    J Biol Chem; 1969 Oct; 244(20):5440-8. PubMed ID: 5348596
    [No Abstract]   [Full Text] [Related]  

  • 7. Mode of formulation of cholesta-5,7-dien-3beta-ol from Cholest-5-en-3beta-ol by Larvae of Calliphora erythrocephala.
    Johnson P; Cook IF; Rees HH; Goodwin TW
    Biochem J; 1975 Nov; 152(2):303-11. PubMed ID: 1220687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4,4-dimethyl-5-alpha-cholesta-8,14-dien-3-beta-ol. A new precursor of cholesterol in mammalian tissues.
    Fiecchi A; Canonica L; Scala A; Cattabeni F; Paoletti EG; Paoletti R
    Life Sci; 1969 Jun; 8(12):629-34. PubMed ID: 5804656
    [No Abstract]   [Full Text] [Related]  

  • 9. 22-trans-cholesta-5,22,24-trien-3-beta-OL -- an intermediate in the conversion of stigmasterol to cholesterol in the tobacco hornworm, Manduca sexta (Johannson).
    Svoboda JA; Hutchins RF; Thompson MJ; Robbins WE
    Steroids; 1969 Nov; 14(5):469-76. PubMed ID: 5356908
    [No Abstract]   [Full Text] [Related]  

  • 10. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
    Watkinson IA; Wilton DC; Munday KA; Akhtar M
    Biochem J; 1971 Jan; 121(1):131-7. PubMed ID: 4398958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stereochemistry of the hydrogen elimination in the biological conversion of cholest-7-en-3-beta-ol into cholesterol.
    Akhtar M; Marsh S
    Biochem J; 1967 Feb; 102(2):462-7. PubMed ID: 6029605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of the enzymatic conversion of delta 8-cholesten-3 beta-ol to delta 7-cholesten-3 beta-ol.
    Lee WH; Kammereck R; Lutsky BN; McCloskey JA; Schroepfer GJ
    J Biol Chem; 1969 Apr; 244(8):2033-40. PubMed ID: 5781997
    [No Abstract]   [Full Text] [Related]  

  • 13. The location of the 4-pro-R protons of mevalonic acid in cholesterol.
    Mulheirn LJ; Caspi E
    J Biol Chem; 1971 Jun; 246(12):3948-52. PubMed ID: 5561468
    [No Abstract]   [Full Text] [Related]  

  • 14. A novel olefinic rearrangement. The enzymic conversion of cholesta-7,9-dien-3 -ol into cholesta-8,14-dien-3 -ol.
    Akhtar M; Freeman CW; Rahimtula AD; Wilton DC
    Biochem J; 1972 Sep; 129(2):225-9. PubMed ID: 4404936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate activation in pyridine nucleotide-linked reactions: illustrations from the steroid field.
    Akhtar M; Wilton DC; Watkinson IA; Rahimtula AD
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):167-77. PubMed ID: 4401774
    [No Abstract]   [Full Text] [Related]  

  • 16. Enzymatic conversion of cholest-8(14)-en-3 beta, 15 alpha-diol and cholest-8(14)-en-3 beta, 15 beta-diol to cholesterol.
    Huntoon S; Schroepfer GJ
    Biochem Biophys Res Commun; 1970 Jul; 40(2):476-80. PubMed ID: 5474796
    [No Abstract]   [Full Text] [Related]  

  • 17. [Cholest-4-en-26-ol-3-one and cholesta-1,4-dien-26-ol-3-one as conponents of a new microbiologically formed type of ester].
    Schubert K; Kaufmann G; Budzikiewicz H
    Biochim Biophys Acta; 1969 Jan; 176(1):170-7. PubMed ID: 5766015
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of a cholesta-8,14-dien-3-beta-ol system in cholesterol biosynthesis.
    Akhtar M; Watkinson IA; Rahimtula AD; Wilton DC; Munday KA
    Biochem J; 1969 Mar; 111(5):757-61. PubMed ID: 5783476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stereospecificity of the cholesterol delta 22-dehydrogenase of Tetrahymena pyriformis and the origin of the C-22 protons of cholesterol.
    Zander JM; Caspi E
    J Biol Chem; 1970 Apr; 245(7):1682-7. PubMed ID: 5438358
    [No Abstract]   [Full Text] [Related]  

  • 20. The formation of cholest-5-ene-3 ,26-diol as an intermediate in the conversion of cholesterol into bile acids by liver mitochondria.
    Mitropoulos KA; Avery MD; Myant NB; Gibbons GF
    Biochem J; 1972 Nov; 130(2):363-71. PubMed ID: 4664570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.