These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 5358241)

  • 21. Inactivation of the bovine lens trypsin inhibitor by ultraviolet irradiation.
    Tse SS; Ortwerth BJ
    Exp Eye Res; 1980 Sep; 31(3):313-25. PubMed ID: 7000531
    [No Abstract]   [Full Text] [Related]  

  • 22. Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter.
    Cai MZ; Kuck JF; Yu NT
    Exp Eye Res; 1989 Oct; 49(4):531-41. PubMed ID: 2806422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of protein diffusivity in intact human and bovine lenses with application to cataract.
    Tanaka T; Benedek GB
    Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein carbonylation and glycation in human lenses.
    Balog Z; Klepac R; Sikić J; Jukić-Lesina T
    Coll Antropol; 2001; 25 Suppl():145-8. PubMed ID: 11817006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of human lens crystallins and their sulphydryl contents of different age in two-dimension electrophoresis.
    Wu Y; Pan S; Li S; Huang Q; Fu SC
    Yan Ke Xue Bao; 1999 Mar; 15(1):32-5. PubMed ID: 12579658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive metabolite hypothesis for human senile cataract.
    Truscott RJ; Pyne SG; Manthey M
    Lens Eye Toxic Res; 1991; 8(2-3):251-7. PubMed ID: 1911640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of hydrogen peroxide by lens proteins: protein-derived hydrogen peroxide as a potential mechanism of oxidative insult to the lens.
    Hunt JV; Jiang ZY; Wolff SP
    Free Radic Biol Med; 1992 Oct; 13(4):319-23. PubMed ID: 1398215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Metabolism of free and protein-bound urea in crystalline lenses in normal condition and in cataract].
    Gershenovich ZS; Ul'iankina TI
    Vestn Oftalmol; 1970; 4():62-4. PubMed ID: 5502573
    [No Abstract]   [Full Text] [Related]  

  • 30. [Free radical oxidation of lipids and thiol groups in the formation of a cataract].
    Babizhaev MA; Deev AI
    Biofizika; 1986; 31(1):109-14. PubMed ID: 3955083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic and biochemical evaluation of human diabetic lens.
    Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S
    Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ
    Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alteration of lens sulfhydryl groups induced by oxidative stress: Raman spectroscopic study of hydrogen peroxide-treated rat lens.
    Tomohiro M; Mizuno A
    Jpn J Ophthalmol; 1995; 39(2):130-6. PubMed ID: 8538068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular structures and interactions of bovine and human gamma-crystallins.
    Summers L; Slingsby C; White H; Narebor M; Moss D; Miller L; Mahadevan D; Lindley P; Driessen H; Blundell T
    Ciba Found Symp; 1984; 106():219-36. PubMed ID: 6568975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in human lens proteins during nuclear cataract formation.
    Truscott RJ; Augusteyn RC
    Exp Eye Res; 1977 Feb; 24(2):159-70. PubMed ID: 844510
    [No Abstract]   [Full Text] [Related]  

  • 36. Dietary caloric restriction may delay the development of cataract by attenuating the oxidative stress in the lenses of Brown Norway rats.
    Wang K; Li D; Sun F
    Exp Eye Res; 2004 Jan; 78(1):151-8. PubMed ID: 14667836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucosylation of human lens protein and cataractogenesis.
    Pande A; Garner WH; Spector A
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1260-6. PubMed ID: 496956
    [No Abstract]   [Full Text] [Related]  

  • 38. The biochemical organization of the lens.
    Harding JJ
    Trans Ophthalmol Soc U K (1962); 1982; 102 Pt 3():310-3. PubMed ID: 6964271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The distribution of soluble, insoluble and high molecular weight fractions of senile normal and cataractous human lenses as a function of internal calcium.
    Bushell AR; Duncan G
    Exp Eye Res; 1978 Feb; 26(2):223-6. PubMed ID: 631235
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus.
    Cerami A; Stevens VJ; Monnier VM
    Metabolism; 1979 Apr; 28(4 Suppl 1):431-7. PubMed ID: 122296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.