These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 5361833)

  • 21. Relationship between accumulation of guanine ribonucleotidyl-(3'-5')-adenosine and formation of riboflavin.
    Mitsuda H; Nishikawa Y; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):403-12. PubMed ID: 146733
    [No Abstract]   [Full Text] [Related]  

  • 22. [Formation of significant quantities of riboflavin by various species of yeasts of the genus Debaryomyces].
    Shavlovskiĭ GM; Ksheminskaia GP; Varivoda MI
    Mikrobiologiia; 1970; 39(2):327-30. PubMed ID: 5493678
    [No Abstract]   [Full Text] [Related]  

  • 23. Biosynthesis of riboflavin by Eremothecium ashbyii. 8. The amino acid and keto acid pools of the mycelial cell-free extracts and their relation to transaminase activities at different stages of growth.
    Osman HG; Chenouda MS
    Can J Microbiol; 1965 Aug; 11(4):619-24. PubMed ID: 5861282
    [No Abstract]   [Full Text] [Related]  

  • 24. [Physiological and biochemical characteristics of propionic acid cocci].
    Alekseeva MA; Vorob'eva LI; Baranova NA; Aleksandrushkina NI
    Mikrobiologiia; 1973; 42(2):464-7. PubMed ID: 4801847
    [No Abstract]   [Full Text] [Related]  

  • 25. The influence of sodium deoxycholate, dimethylsulphoxide (DMSO) and ethylenediamine tetraacetic acid (EDTA) on the growth of Ashbya gossypii and riboflavin synthesis.
    Karabin LA
    Acta Microbiol Pol; 1968; 17(1):95-8. PubMed ID: 4172278
    [No Abstract]   [Full Text] [Related]  

  • 26. [Overproduction of riboflavin in mutants of Pichia guilliermondii yeasts resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine].
    Shavlovskiĭ GM; Sibirnyĭ AA; Ksheminskaia GP; Pinchuk GE
    Mikrobiologiia; 1980; 49(5):702-7. PubMed ID: 7442566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoirradiation products of flavin derivatives, and the effects of photooxidation on guanine.
    Kino K; Kobayashi T; Arima E; Komori R; Kobayashi T; Miyazawa H
    Bioorg Med Chem Lett; 2009 Apr; 19(7):2070-4. PubMed ID: 19254841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA-protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts.
    Xu X; Muller JG; Ye Y; Burrows CJ
    J Am Chem Soc; 2008 Jan; 130(2):703-9. PubMed ID: 18081286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between the morphological variability and riboflavin producing capacity of Eremothecium ashbyii.
    Vághy T
    Acta Microbiol Acad Sci Hung; 1971; 18(2):75-80. PubMed ID: 5148867
    [No Abstract]   [Full Text] [Related]  

  • 30. [Biosynthesis of 6,7-dimethyl-8-ribityllumazine in yeast extracts of Pichia guilliermondii].
    Pogvinenko EM; Shavlovskiĭ GM; Zakal'skiĭ AE; Zakhodilo IV
    Biokhimiia; 1982 Jun; 47(6):931-6. PubMed ID: 7115806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paradoxical hotspots for guanine oxidation by a chemical mediator of inflammation.
    Margolin Y; Cloutier JF; Shafirovich V; Geacintov NE; Dedon PC
    Nat Chem Biol; 2006 Jul; 2(7):365-6. PubMed ID: 16751762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Thin layer electrophoresis of DNS-aminoacids].
    Massa A; Cocchieri R; Tentori L
    Ann Ist Super Sanita; 1969; 5(1):48-50. PubMed ID: 5382308
    [No Abstract]   [Full Text] [Related]  

  • 33. Biosynthesis of riboflavin by Ashbya gossypii. II. The influence of animal proteins on the riboflavin biosynthesis.
    Szcześniak T; Karabin L; Szczepanowska M; Wituch K
    Acta Microbiol Pol B; 1971; 3(2):91-5. PubMed ID: 5105633
    [No Abstract]   [Full Text] [Related]  

  • 34. Enzymic constitution, ribitol formation & flavinogenesis in Eremothecium ashbyii.
    Madia AM; Mattoo AK; Modi VV; Amin GP
    Indian J Exp Biol; 1976 Nov; 14(6):680-3. PubMed ID: 1035903
    [No Abstract]   [Full Text] [Related]  

  • 35. Analysis of guanine oxidation product via electron transfer in 5'-d(TTGGTA)-3'.
    Kino K; Sugiyama H; Saito I
    Nucleic Acids Symp Ser; 1997; (37):39-40. PubMed ID: 9585988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Studies on alkaloid metabolism in Datura roots. 1. Conversion of tropin in root cultures of Datura innoxia Mill].
    Romeike A; Aurich O
    Pharmazie; 1967 Oct; 22(10):603-4. PubMed ID: 5601114
    [No Abstract]   [Full Text] [Related]  

  • 37. BACTERIAL DEGRADATION OF RIBOFLAVIN. V. STOICHIOMETRY OF RIBOFLAVIN DEGRADATION TO OXAMIDE AND OTHER PRODUCTS, OXIDATION OF C14-LABELED INTERMEDIATES AND ISOLATION OF THE PSEUDOMONAD EFFECTING THESE TRANSFORMATIONS.
    HARKNESS DR; TSAI L; STADTMAN ER
    Arch Biochem Biophys; 1964 Nov; 108():323-33. PubMed ID: 14240585
    [No Abstract]   [Full Text] [Related]  

  • 38. [Variability of propionic acid bacteria exposed to N-methyl-N-nitro-N-nitrosoguanidine].
    Vorob'eva LI; Baranova NA; Chan TT
    Mikrobiologiia; 1973; 42(2):301-6. PubMed ID: 4769920
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase.
    Fischer M; Bacher A
    Arch Biochem Biophys; 2008 Jun; 474(2):252-65. PubMed ID: 18298940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar cane and agave juices as substrates for the microbiological production of SCP, L-lysine and riboflavin.
    Sánchez-Marroquín A
    Rev Latinoam Microbiol; 1971; 13(2):107-12. PubMed ID: 5288194
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.