These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 5362426)

  • 21. Comparative prenatal development of the spinal cord in normal and dysraphic dogs: embryonic stage.
    Engel HN; Draper DD
    Am J Vet Res; 1982 Oct; 43(10):1729-34. PubMed ID: 6756221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Neurosurgical embryology. Part 7: Development of the spinal cord, the spine and the posterior fossa].
    Afonso ND; Catala M
    Neurochirurgie; 2003 Nov; 49(5):503-10. PubMed ID: 14646815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antisense inhibition of engrailed genes in mouse embryos reveals roles for these genes in craniofacial and neural tube development.
    Augustine KA; Liu ET; Sadler TW
    Teratology; 1995 May; 51(5):300-10. PubMed ID: 7482351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental potential of defined neural progenitors derived from mouse embryonic stem cells.
    Plachta N; Bibel M; Tucker KL; Barde YA
    Development; 2004 Nov; 131(21):5449-56. PubMed ID: 15469972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific regulation of cyclins D1 and D2 by FGF and Shh signaling coordinates cell cycle progression, patterning, and differentiation during early steps of spinal cord development.
    Lobjois V; Benazeraf B; Bertrand N; Medevielle F; Pituello F
    Dev Biol; 2004 Sep; 273(2):195-209. PubMed ID: 15328007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryonic hydromyelia: cystic dilatation of the lumbosacral neural tube in human embryos.
    Ikenouchi J; Uwabe C; Nakatsu T; Hirose M; Shiota K
    Acta Neuropathol; 2002 Mar; 103(3):248-54. PubMed ID: 11907805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity of contralateral commissural projections in the embryonic rodent spinal cord.
    Kadison SR; Kaprielian Z
    J Comp Neurol; 2004 May; 472(4):411-22. PubMed ID: 15065116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential.
    Borgens RB; Shi R
    Dev Dyn; 1995 Aug; 203(4):456-67. PubMed ID: 7496037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific projections of sympathetic preganglionic neurons are not intrinsically determined by segmental origins of their cell bodies.
    Yip JW; Yip YP; Capriotti C
    J Neurobiol; 1998 Jun; 35(4):371-8. PubMed ID: 9624619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roof plate and dorsal spinal cord dl1 interneuron development in the dreher mutant mouse.
    Millen KJ; Millonig JH; Hatten ME
    Dev Biol; 2004 Jun; 270(2):382-92. PubMed ID: 15183721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo.
    Sholomenko GN; Delaney KR
    Exp Neurol; 1998 Dec; 154(2):430-51. PubMed ID: 9878180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory effects of ventral signals on the development of Brn-3.0-expressing neurons in the dorsal spinal cord.
    Fedtsova N; Turner EE
    Dev Biol; 1997 Oct; 190(1):18-31. PubMed ID: 9331328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aberrant differentiation of the axially condensed tail bud mesenchyme in human embryos with lumbosacral myeloschisis.
    Saitsu H; Yamada S; Uwabe C; Ishibashi M; Shiota K
    Anat Rec (Hoboken); 2007 Mar; 290(3):251-8. PubMed ID: 17525941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos.
    Schoenwolf GC; Nichols DH
    J Comp Neurol; 1984 Feb; 222(4):496-505. PubMed ID: 6699215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue interactions in basal regions of the cranial neuroepithelium in the C57BL mouse.
    Wilson DB
    J Craniofac Genet Dev Biol; 1983; 3(3):269-79. PubMed ID: 6643651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural crest ablation and limb morphogenesis.
    Shoobridge R; Velkou D; McCredie J
    J Exp Zool; 1983 Jan; 225(1):73-87. PubMed ID: 6833978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord.
    Orentas DM; Miller RH
    Dev Biol; 1996 Jul; 177(1):43-53. PubMed ID: 8660875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of the sonic hedgehog gene in human embryos with neural tube defects.
    Kirillova I; Novikova I; Augé J; Audollent S; Esnault D; Encha-Razavi F; Lazjuk G; Attié-Bitach T; Vekemans M
    Teratology; 2000 May; 61(5):347-54. PubMed ID: 10777830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Second messenger regulation of occlusion of the spinal neurocoel in the chick embryo.
    Desmond ME; Duzy MJ; Federici BD
    Dev Dyn; 1993 Aug; 197(4):291-306. PubMed ID: 8292826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.