These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 536283)

  • 1. Use of microspheres in measurement of regional blood flows during +GZ stress.
    Laughlin MH; Burns JW; Loxsom FM
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Dec; 47(6):1148-56. PubMed ID: 536283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coronary blood flow in conscious miniature swine during +GZ acceleration stress.
    Laughlin MH; Witt WM; Whittaker RN; Jones EF
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Sep; 49(3):462-70. PubMed ID: 7204169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal blood flow in miniature swine during +GZ stress and anti-G suit inflation.
    Laughlin MH; Witt WM; Whittaker RN
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Sep; 49(3):471-5. PubMed ID: 7204170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary blood flow during +Gz stress in +Gz conditioned adult miniature swine.
    Laughlin MH; Witt WM; Whittaker RN
    Aviat Space Environ Med; 1980 Oct; 51(10):1104-8. PubMed ID: 7469953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of cardiac output in unanesthetized baboons during +Gz stress with and without an anti-G suit.
    Laughlin MH; Burns JW; Parnell MJ
    Aviat Space Environ Med; 1982 Feb; 53(2):133-41. PubMed ID: 7059329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of myocardial perfusion in the pathogenesis of the cardiac pathology associated with +Gz exposure in miniature swine.
    Laughlin MH; Young JT; Witt WM; Crump PP
    Aviat Space Environ Med; 1980 Nov; 51(11):1197-1204. PubMed ID: 7213264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow in conscious miniature swine during high sustained +Gz acceleration stress.
    Laughlin MH; Witt WM; Whittaker RN
    Aviat Space Environ Med; 1979 Nov; 50(11):1129-33. PubMed ID: 526213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Right ventricular pressure response to +GZ acceleration stress.
    Whinnery JE; Laughlin MH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Oct; 53(4):908-13. PubMed ID: 6759490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dipyridamole on the cardiovascular response to +Gz stress in miniature swine.
    Peterson DF; Burns JW; Fanton JW; Laughlin MH
    Aviat Space Environ Med; 1989 Mar; 60(3):218-25. PubMed ID: 2712800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamics of miniature swine during +Gz stress with and without anti-G support.
    Burns JW; Parnell MJ; Burton RR
    J Appl Physiol (1985); 1986 May; 60(5):1628-37. PubMed ID: 3519569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary blood flow reserve during +Gz stress and treadmill exercise in miniature swine.
    Laughlin MH; Burns JW; Fanton J; Ripperger J; Peterson DF
    J Appl Physiol (1985); 1988 Jun; 64(6):2589-96. PubMed ID: 3403443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total and regional cerebral blood flow during recovery from G-LOC.
    Werchan PM; Schadt JC; Fanton JW; Laughlin MH
    Aviat Space Environ Med; 1996 Aug; 67(8):751-8. PubMed ID: 8853831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of the risk of human cardiac damage during +Gz stress: a review.
    Laughlin MH
    Aviat Space Environ Med; 1982 May; 53(5):423-31. PubMed ID: 7046723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-G suit effect of cardiovascular dynamic changes due to +GZ stress.
    Peterson DF; Bishop VS; Erickson HH
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Nov; 43(5):765-9. PubMed ID: 591467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional blood flows measured in conscious rats by combined Fick and microsphere methods.
    Tsuchiya M; Ferrone RA; Walsh GM; Frohlich ED
    Am J Physiol; 1978 Sep; 235(3):H357-60. PubMed ID: 696848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mild coronary artery stenosis has no impact on cardiac and vascular parameters in miniature swine exposed to positive acceleration stress.
    Zhang H; Luo H; Sun J; Liu C; Tian Y; Chen H; Zhang C
    J Cardiovasc Med (Hagerstown); 2016 Oct; 17(10):713-8. PubMed ID: 25799013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiologic effects of acceleration stress in the miniature swine.
    Burns JW; Laughlin MH; Witt WM; Young JT; Ellis JP
    Aviat Space Environ Med; 1983 Oct; 54(10):881-93. PubMed ID: 6651709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral and spinal cord blood flow dynamics during high sustained +Gz.
    Werchan PM; Schadt JC; Fanton JW; Laughlin MH
    Aviat Space Environ Med; 1994 Jun; 65(6):501-9. PubMed ID: 8074622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional coronary blood flow at rest and during high sustained +Gz in a miniature swine with subclinical, ischemic, coronary heart disease due to coronary stenosis.
    Laughlin MH; Witt WM; Burns JW; Young JT
    Aviat Space Environ Med; 1978 Nov; 49(11):1308-13. PubMed ID: 718574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration.
    Kawai Y; Puma SC; Hargens AR; Murthy G; Warkander D; Lundgren CE
    J Gravit Physiol; 1997 Oct; 4(3):31-4. PubMed ID: 11541866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.