These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 536589)
1. Comparative characterization of the basic forebrain cortical zones in Emys orbicularis (Linnaeus) and Testudo horsfieldi (Gray). Davydova TV; Goncharova NV J Hirnforsch; 1979; 20(3):245-62. PubMed ID: 536589 [TBL] [Abstract][Full Text] [Related]
2. [Comparative characteristics of the dendritic spines of the 3 chief zones of the forebrain cortex of steppe and bog turtles]. Davydova TV; Goncharova NV Neirofiziologiia; 1977; 9(2):142-8. PubMed ID: 859669 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic and ecological features of the structural organization of the forebrain cortical plate in Chelonia: 1. Neuronal composition and dendrite spines of the cortical zones in land and aquatic Chelonia. Goncharova NV; Davydova TV J Hirnforsch; 1983; 24(3):253-66. PubMed ID: 6886394 [TBL] [Abstract][Full Text] [Related]
4. [Comparative characteristics of the dentritic spines of the 3 chief cortical zones of the steppe turtle forebrain]. Davydova TV; Goncharova NV Tsitologiia; 1977 May; 19(5):489-94. PubMed ID: 888205 [TBL] [Abstract][Full Text] [Related]
5. [Comparative study of the dendritic spines in the principle cortical zones of the turtle forebrain]. Davydova TV; Goncharova NV Arkh Anat Gistol Embriol; 1983 May; 84(5):17-23. PubMed ID: 6882217 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic and ecological properties of the structural organization of the cortical plate in the forebrain of Chelonia. 2. Axo-spinal synaptic complexes of the plexiform layer of the cortical zones in aquatic and land Chelonia. Davydova TV; Goncharova NV J Hirnforsch; 1983; 24(3):315-27. PubMed ID: 6886399 [TBL] [Abstract][Full Text] [Related]
7. Synaptic patterns in the visual cortex of turtle: an electron microscopic study. Ebner FF; Colonnier M J Comp Neurol; 1975 Mar; 160(1):51-79. PubMed ID: 1112922 [TBL] [Abstract][Full Text] [Related]
8. [Comparative study of the neuronal and synaptic organization of the tectum mesencephali in the Caspian (Clemmys caspica Gmel.) and pond (Emys orbicularis L.) tortoises]. Davydova TV; Goncharova NV Arkh Anat Gistol Embriol; 1981 Oct; 81(10):24-30. PubMed ID: 7316786 [TBL] [Abstract][Full Text] [Related]
9. [Descending connections of the dorsal cortex in turtles]. Gaidaenko GV Zh Evol Biokhim Fiziol; 1977; 13(3):416-8. PubMed ID: 899390 [TBL] [Abstract][Full Text] [Related]
10. [Development of neuronal structure in the hippocampus during pre- and post-natal ontogenesis in the albino rat. III. Morphometric determination of ontogenetic changes in dendrite structure and spine distribution on pyramidal neurons (CA1) of the hippocampus]. Minkwitz HG J Hirnforsch; 1976; 17(3):255-75. PubMed ID: 1002983 [TBL] [Abstract][Full Text] [Related]
11. [Topography and cytoarchitectonics of the main cortical zones of the turtle forebrain]. Goncharova NV; Davydova TV Arkh Anat Gistol Embriol; 1977 Sep; 73(9):81-7. PubMed ID: 597065 [TBL] [Abstract][Full Text] [Related]
12. The thalamocortical projection in Pseudemys turtles: a quantitative electron microscopic study. Smith LM; Ebner FF; Colonnier M J Comp Neurol; 1980 Apr; 190(3):445-61. PubMed ID: 7391267 [TBL] [Abstract][Full Text] [Related]
13. Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. Allen GV; Hopkins DA J Comp Neurol; 1989 Aug; 286(3):311-36. PubMed ID: 2504784 [TBL] [Abstract][Full Text] [Related]
14. Calretinin immunoreactivity in the cerebral cortex of the lizard Psammodromus algirus: a light and electron microscopic study. Dávila JC; Padial J; Andreu MJ; Real MA; Guirado S J Comp Neurol; 1997 Jun; 382(3):382-93. PubMed ID: 9183700 [TBL] [Abstract][Full Text] [Related]
15. [Prenatal development and postnatal changes in the guinea pig cortex: microscopic evaluation of a natural deprivation experiment. I. Prenatal development]. Schüz A J Hirnforsch; 1981; 22(1):93-111. PubMed ID: 7240730 [TBL] [Abstract][Full Text] [Related]
16. [Electron microscopic and light microscopic studies of optical and cortical afferents in the lateral geniculate body, pars dorsalis, of albino rats with special attention to synaptic organization]. Winkelmann E; Brauer K; Marx I; David H J Hirnforsch; 1976; 17(4):305-33. PubMed ID: 1018093 [TBL] [Abstract][Full Text] [Related]
17. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. Kenigfest NB; Repérant J; Rio JP; Belekhova MG; Ward R; Vesselkin NP; Miceli D; Herbin M J Comp Neurol; 1998 Feb; 391(4):470-90. PubMed ID: 9486826 [TBL] [Abstract][Full Text] [Related]
18. [Comparative analysis of the neuronal and synaptic organization of the mesencephalic visual center of Greek and steppe turtles]. Davydova TV; Goncharova NV Arkh Anat Gistol Embriol; 1978 Dec; 75(12):40-5. PubMed ID: 742983 [TBL] [Abstract][Full Text] [Related]
19. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. Williams SM; Goldman-Rakic PS; Leranth C J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Chicurel ME; Harris KM J Comp Neurol; 1992 Nov; 325(2):169-82. PubMed ID: 1460112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]