These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 5366915)

  • 1. Phosphorylation of nuclear proteins in avian erythrocytes.
    Gershey EL; Kleinsmith LJ
    Biochim Biophys Acta; 1969 Dec; 194(2):519-25. PubMed ID: 5366915
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in histone acetyl content and in nuclear non-histone protein composition of avian erythroid cells at different stages of maturation.
    Ruiz-Carrillo A; Wangh LJ; Littau VC; Allfrey VG
    J Biol Chem; 1974 Nov; 249(22):7358-68. PubMed ID: 4436314
    [No Abstract]   [Full Text] [Related]  

  • 3. A comparative study of histone acetylation, histone deacetylation, and ribonucleic acid synthesis in avian reticulocytes and erythrocytes.
    Sanders LA; Schechter NM; McCarty KS
    Biochemistry; 1973 Feb; 12(5):783-91. PubMed ID: 4568767
    [No Abstract]   [Full Text] [Related]  

  • 4. Evolution of the polyribosome distribution during in vivo reticulocyte maturation.
    Marbaix G; Burney A; Huez G; Lebleu B; Temmerman J
    Eur J Biochem; 1970 Apr; 13(2):322-5. PubMed ID: 5439936
    [No Abstract]   [Full Text] [Related]  

  • 5. Non-histone chromatin proteins during maturation of avian erythroid cells.
    Krajewska W; Wierzbicki R; Klyszejko-Stefanowicz K
    Acta Biochim Pol; 1976; 23(2-3):177-83. PubMed ID: 970032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of ribosomal proteins in rabbit reticulocytes. A cell-free system with ribosomal protein kinase activity.
    Kabat D
    Biochemistry; 1971 Jan; 10(2):197-203. PubMed ID: 4321662
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in nuclear acidic protein complement of red blood cells during embryonic development.
    Vidali G; Boffa LC; Littau VC; Allfrey KM; Allfrey VG
    J Biol Chem; 1973 Jun; 248(11):4065-8. PubMed ID: 4708100
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions.
    Gershey EL; Haslett GW; Vidali G; Allfrey VG
    J Biol Chem; 1969 Sep; 244(18):4871-7. PubMed ID: 5824561
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorylation "in vitro" of red blood cell histones.
    Lurquin PF; Seligy VL; Neelin JM
    Arch Int Physiol Biochim; 1972 Jan; 80(1):202-3. PubMed ID: 4111316
    [No Abstract]   [Full Text] [Related]  

  • 10. [Dependence of catalase activity on the maturation of duck erythrocytes].
    Rapoport S; Hartwig A; Gross J
    Acta Biol Med Ger; 1974; 32(6):601-8. PubMed ID: 4419693
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of erythrocyte organic phosphates in blood oxygen transport in anemic quail.
    Riera M; Fuster JF; Palacios L
    Am J Physiol; 1991 Apr; 260(4 Pt 2):R798-803. PubMed ID: 2012250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymic adenosine diphosphoribosylation of nuclear proteins.
    Nishizuka Y; Ueda K; Yoshihara K; Yamamura H; Takeda M; Hayaishi O
    Cold Spring Harb Symp Quant Biol; 1969; 34():781-6. PubMed ID: 4314921
    [No Abstract]   [Full Text] [Related]  

  • 13. Selective synthesis and modification of nuclear proteins during maturation of avian erythroid cells.
    Ruiz-Carrillo A; Wangh LJ; Allfrey VG
    Arch Biochem Biophys; 1976 May; 174(1):273-90. PubMed ID: 180895
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on erythrocyte glycolysis. V. Change of the glycolytic intermediate pattern of reticulocytes during maturation.
    Oyama H; Minakami S
    J Biochem; 1967 Jan; 61(1):103-7. PubMed ID: 6048963
    [No Abstract]   [Full Text] [Related]  

  • 15. The distribution of RNA and ribosomes in reticulocytes.
    Burka ER
    Biochim Biophys Acta; 1968 Oct; 166(3):672-80. PubMed ID: 5722697
    [No Abstract]   [Full Text] [Related]  

  • 16. 3-ribosyluric acid and nucleotide content of erythroid cells in phenylhydrazine-induced anemia in cattle.
    Smith RC; Teer PA
    Int J Biochem; 1981; 13(4):509-12. PubMed ID: 7238984
    [No Abstract]   [Full Text] [Related]  

  • 17. Study of the mechanism of genome inactivation in avian erythrocytes. 1. Characteristics of erythroid cell differentiating system.
    Gazaryan KG; Kul'minskaya AS; Anan'yants TG; Kir'yanov GI
    Sov J Dev Biol; 1971; 2(3):212-21. PubMed ID: 5154591
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphorylation of histones in avian erythroblasts.
    Seligy VL; Neelin JM
    Can J Biochem; 1973 Sep; 51(9):1316-24. PubMed ID: 4742883
    [No Abstract]   [Full Text] [Related]  

  • 19. Messenger ribonucleoprotein complexes in avian erythroblasts: carriers of post-transcriptional regulation?
    Maundrell K; Maxwell ES; Civelli O; Vincent A; Goldenberg S; Buri JF; Imaizumi-Scherrer MT; Scherrer K
    Mol Biol Rep; 1979 May; 5(1-2):43-51. PubMed ID: 379594
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphorylation of an endogenous membrane protein by an endogenous, membrane-associated cyclic adenosine 3',5'-monophosphate-dependent protein kinase in human erythrocyte ghosts.
    Guthrow CE; Allen JE; Rasmussen H
    J Biol Chem; 1972 Dec; 247(24):8145-53. PubMed ID: 4344993
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.