These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 536843)

  • 21. Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic 137Cs/(137m)Ba generator.
    Chakravarty R; Ram R; Pillai KT; Pamale Y; Kamat RV; Dash A
    J Chromatogr A; 2012 Jan; 1220():82-91. PubMed ID: 22196244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.
    Pal S; Chattopadhyay S; Das MK; Sudersanan M
    Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploitation of nano alumina for the chromatographic separation of clinical grade 188Re from 188W: a renaissance of the 188W/188Re generator technology.
    Chakravarty R; Shukla R; Ram R; Venkatesh M; Tyagi AK; Dash A
    Anal Chem; 2011 Aug; 83(16):6342-8. PubMed ID: 21726091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography.
    Atcher RW; Friedman AM; Huizenga JR; Rayudu GV; Silverstein EA; Turner DA
    J Nucl Med; 1980 Jun; 21(6):565-9. PubMed ID: 6966681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel technique for the effective concentration of 99mTc from a large alumina column loaded with low specific-activity (n,gamma)-produced 99Mo.
    Chattopadhyay S; Das MK
    Appl Radiat Isot; 2008 Oct; 66(10):1295-9. PubMed ID: 18387810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and clinical performance of an automated, portable tungsten-178/tantalum-178 generator.
    Lacy JL; Layne WW; Guidry GW; Verani MS; Roberts R
    J Nucl Med; 1991 Nov; 32(11):2158-61. PubMed ID: 1941155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of inorganic exchangers to improve the 82Sr-82Rb generator.
    Kulprathipanja S; Hnatowich DJ; Beh R
    Int J Appl Radiat Isot; 1979 Jul; 30(7):447-9. PubMed ID: 478669
    [No Abstract]   [Full Text] [Related]  

  • 28. Application of
    Kostenikov NA; Zhuikov BL; Chudakov VM; Iliuschenko YR; Shatik SV; Zaitsev VV; Sysoev DS; Stanzhevskiy AA
    Brain Behav; 2019 Mar; 9(3):e01212. PubMed ID: 30729720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive Model for
    Scott AW; Hyun M; Kim J
    J Nucl Med Technol; 2022 Mar; 50(1):38-42. PubMed ID: 34583949
    [No Abstract]   [Full Text] [Related]  

  • 30. A krypton-81m generator for organ ventilation and perfusion investigations.
    van Zyl WH; Kleynhans PH; Lötter MG; Ungerer MJ; van Aswegen A; Minnaar PC; Iturralde M; Weich DJ
    S Afr Med J; 1979 Jun; 55(23):920-4. PubMed ID: 472931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid determination of (90)Sr impurities in freshly "generator eluted"(90)Y for radiopharmaceutical preparation.
    Bonardi ML; Martano L; Groppi F; Chinol M
    Appl Radiat Isot; 2009 Oct; 67(10):1874-7. PubMed ID: 19628401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential column chromatography for ionic Ga-68. II: Organic ion exchangers as chromatographic supports.
    Neirinckx RD; Davis MA
    J Nucl Med; 1980 Jan; 21(1):81-3. PubMed ID: 7356744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new osmium-191/iridium-191m radionuclide generator system using activated carbon.
    Brihaye C; Butler TA; Knapp FF; Guillaume M; Watson EE; Stabin MG
    J Nucl Med; 1986 Mar; 27(3):380-7. PubMed ID: 3712057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An improved tungsten-178/tantalum-178 generator system for high volume clinical applications.
    Lacy JL; Ball ME; Verani MS; Wiles HB; Babich JW; LeBlanc AD; Stabin M; Bolomey L; Roberts R
    J Nucl Med; 1988 Sep; 29(9):1526-38. PubMed ID: 3137317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.
    Sadeghi M; Aboudzadeh M; Zali A; Zeinali B
    Appl Radiat Isot; 2009; 67(7-8):1392-6. PubMed ID: 19285420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Essentials of a rubidium-82 generator for nuclear medicine.
    Yano Y
    Int J Rad Appl Instrum A; 1987; 38(3):205-11. PubMed ID: 3034827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large volume injection in ion chromatography Separation of rubidium and strontium for on-line inductively coupled plasma mass spectrometry determination of strontium isotope ratios.
    García-Ruiz S; Moldovan M; García Alonso JI
    J Chromatogr A; 2007 May; 1149(2):274-81. PubMed ID: 17399731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain tumor evaluation using Rb-82 and positron emission tomography.
    Yen CK; Yano Y; Budinger TF; Friedland RP; Derenzo SE; Huesman RH; O'Brien HA
    J Nucl Med; 1982 Jun; 23(6):532-7. PubMed ID: 6281406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experience with a 82Sr/82Rb generator for clinical use.
    Kensett MJ; Horlock PL; Waters SL; Bateman DM
    Int J Rad Appl Instrum A; 1987; 38(3):227-31. PubMed ID: 3034830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiocardiography with iridium-191m: an ultrashort-lived radionuclide (T1/2 4.9 sec).
    Treves S; Kulprathipanja S; Hnatowich DJ
    Circulation; 1976 Aug; 54(2):275-9. PubMed ID: 820485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.