These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. [Rate of carbon assimilation by Rhodopseudomonas palustris]. Cherniad'ev II; Doman NG Mikrobiologiia; 1971; 40(3):381-5. PubMed ID: 4398101 [No Abstract] [Full Text] [Related]
6. [Assimilation of acetate by Rhodopseudomonas palustris]. Cherniad'ev II; Kondrat'eva EN; Doman NG Mikrobiologiia; 1970; 39(1):24-9. PubMed ID: 5451433 [No Abstract] [Full Text] [Related]
7. Photosynthetic conversion of formate and CO2 to glutamate by rhodopseudomonas palustris. Yoch DC; Lindstrom ES Biochem Biophys Res Commun; 1967 Jul; 28(1):65-9. PubMed ID: 6049851 [No Abstract] [Full Text] [Related]
9. Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris. Rolls JP; Lindstrom ES J Bacteriol; 1967 Oct; 94(4):860-9. PubMed ID: 6051358 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Rhodopseudomonas palustris for squalene production. Xu W; Chai C; Shao L; Yao J; Wang Y J Ind Microbiol Biotechnol; 2016 May; 43(5):719-25. PubMed ID: 26886756 [TBL] [Abstract][Full Text] [Related]
11. Phototropic H2 production by a newly isolated strain of Rhodopseudomonas palustris. Suwansaard M; Choorit W; Zeilstra-Ryalls JH; Prasertsan P Biotechnol Lett; 2010 Nov; 32(11):1667-71. PubMed ID: 20623317 [TBL] [Abstract][Full Text] [Related]
12. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Egland PG; Gibson J; Harwood CS Appl Environ Microbiol; 2001 Mar; 67(3):1396-9. PubMed ID: 11229940 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17. Kamal VS; Wyndham RC Appl Environ Microbiol; 1990 Dec; 56(12):3871-3. PubMed ID: 2128012 [TBL] [Abstract][Full Text] [Related]
14. Glycerol assimilation by a mutant of Rhodopseudomonas capsulata. Lueking D; Tokuhisa D; Sojka G J Bacteriol; 1973 Sep; 115(3):897-903. PubMed ID: 4728273 [TBL] [Abstract][Full Text] [Related]
15. [The significance of light intensity in the use of various carbon compounds by photosynthesized bacteria]. Nesterov AI; Gogotov IN; Kondrat'eva EN Mikrobiologiia; 1966; 35(2):193-9. PubMed ID: 6004680 [No Abstract] [Full Text] [Related]
16. [Activity of ribulose diphosphate carboxylase in the parent strain and pigmented mutant of Rhodopseudomonas palustris]. Uspenskaia VE; Cherniad'ev II; Petrova GV; Doman NG Mikrobiologiia; 1972; 41(4):686-90. PubMed ID: 5084519 [No Abstract] [Full Text] [Related]
17. [Hydrogen excretion and carbon assimilation by purple bacteria in relation to light intensity]. Gogotov IN Dokl Akad Nauk SSSR; 1968 Dec; 183(4):954-6. PubMed ID: 5747211 [No Abstract] [Full Text] [Related]
18. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Chen CY; Lu WB; Liu CH; Chang JS Bioresour Technol; 2008 Jun; 99(9):3609-16. PubMed ID: 17826982 [TBL] [Abstract][Full Text] [Related]
19. The photometabolism of benzoic acid by Rhodopseudomonas palustris: a new pathway of aromatic ring metabolism. Dutton PL; Evans WC Biochem J; 1968 Sep; 109(2):5P-6P. PubMed ID: 5679383 [No Abstract] [Full Text] [Related]