These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 537354)

  • 1. Biomechanics of the femoral component of total hip prostheses with particular reference to the stress in the bone-cement.
    Yettram AL; Wright KW
    J Biomed Eng; 1979 Oct; 1(4):281-5. PubMed ID: 537354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of stem stress in total hip replacement on prosthesis and cement stiffness.
    Yettram AL; Wright KW
    J Biomed Eng; 1980 Jan; 2(1):54-9. PubMed ID: 7359900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of femoral stem cross-sectional geometry on cement stresses in total hip reconstruction.
    Crowninshield RD; Brand RA; Johnston RC; Milroy JC
    Clin Orthop Relat Res; 1980; (146):71-7. PubMed ID: 7371271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component.
    Lewis JL; Askew MJ; Wixson RL; Kramer GM; Tarr RR
    J Bone Joint Surg Am; 1984 Feb; 66(2):280-6. PubMed ID: 6693456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for shape optimization of a hip prosthesis to maximize the fatigue life of the cement.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Med Eng Phys; 1996 Dec; 18(8):647-54. PubMed ID: 8953557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study.
    Al-Jassir FF; Fouad H; Alothman OY
    Biomed Eng Online; 2013 Jan; 12():5. PubMed ID: 23324627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hip stem taper on cement stresses.
    New AM; Taylor M; Wroblewski BM
    Orthopedics; 2005 Aug; 28(8 Suppl):s857-62. PubMed ID: 16119728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Three-dimensional finite element analysis responsible to bone cement with customized prosthesis of proximal segmental femur].
    Liu Y; Tu CQ; Li XB; Duan H; Pei FX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Mar; 38(2):324-7. PubMed ID: 17441361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of femoral component stem design in total hip arthroplasty.
    Crowninshield RD; Brand RA; Johnston RC; Milroy JC
    J Bone Joint Surg Am; 1980 Jan; 62(1):68-78. PubMed ID: 7351419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip.
    Norman TL; Saligrama VC; Hustosky KT; Gruen TA; Blaha JD
    J Biomech Eng; 1996 Aug; 118(3):399-404. PubMed ID: 8872263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting cement strains near the tip of a cemented femoral component.
    Estok DM; Orr TE; Harris WH
    J Arthroplasty; 1997 Jan; 12(1):40-8. PubMed ID: 9021500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of interface conditions on the behaviour of a Freeman hip endoprosthesis.
    Yettram AL
    J Biomed Eng; 1989 Nov; 11(6):520-4. PubMed ID: 2811351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Stresses on the femur following hip joint replacement].
    Rohlmann A; Mössner U; Bergmann G; Hees G; Kölbel R
    Z Orthop Ihre Grenzgeb; 1983; 121(1):47-57. PubMed ID: 6845829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stem design and material properties on stresses in hip endoprostheses.
    Rohlmann A; Mössner U; Bergmann G; Hees G; Kölbel R
    J Biomed Eng; 1987 Jan; 9(1):77-83. PubMed ID: 3795908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.