These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 5373975)

  • 1. Free and peptide-bound amino acids during the larval and pupal stages of the yellow-fever mosquito, Aedes aegypti.
    Chaput RL; Liles JN
    Ann Entomol Soc Am; 1969 Jul; 62(4):742-7. PubMed ID: 5373975
    [No Abstract]   [Full Text] [Related]  

  • 2. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
    Margam VM; Gelman DB; Palli SR
    J Insect Physiol; 2006 Jun; 52(6):558-68. PubMed ID: 16580015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae).
    Telang A; Frame L; Brown MR
    J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary amino acid on the amino acid pool of Aedes aegypti.
    Thayer DW
    J Insect Physiol; 1972 Mar; 18(3):521-6. PubMed ID: 5045296
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidation of 3-hydroxykynurenine to produce xanthommatin for eye pigmentation: a major branch pathway of tryptophan catabolism during pupal development in the yellow fever mosquito, Aedes aegypti.
    Li J; Beerntsen BT; James AA
    Insect Biochem Mol Biol; 1999 Apr; 29(4):329-38. PubMed ID: 10333572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free amino acid composition of the ageing female mosquito Aedes aegypti as determined by automatic ion-exchange chromatography.
    Stidham JD; Liles JN
    J Insect Physiol; 1969 Oct; 15(10):1969-80. PubMed ID: 5348118
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti.
    Choi MY; Estep A; Sanscrainte N; Becnel J; Vander Meer RK
    Mol Cell Endocrinol; 2013 Aug; 375(1-2):113-20. PubMed ID: 23727337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical period for pupal commitment in the yellow fever mosquito, Aedes aegypti.
    Lan Q; Grier CA
    J Insect Physiol; 2004 Jul; 50(7):667-76. PubMed ID: 15234627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free amino acids and related compounds in the tissues of ageing female Aedes aegypti mosquitoes.
    Thayer DW; Terzian LA
    J Insect Physiol; 1970 Jan; 16(1):1-15. PubMed ID: 5417707
    [No Abstract]   [Full Text] [Related]  

  • 10. Digestion of the avian blood-meal by the mosquito, Aedes aegypti.
    Thayer DW; Terzian LA; Price PA
    J Insect Physiol; 1971 Nov; 17(11):2193-204. PubMed ID: 5158361
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of antibiotics and antimalarials on free amino acids of Aedes aegypti.
    Thayer DW
    J Med Entomol; 1973 Jan; 10(1):57-62. PubMed ID: 4697425
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: expression, cellular localization, and phylogeny.
    Riehle MA; Fan Y; Cao C; Brown MR
    Peptides; 2006 Nov; 27(11):2547-60. PubMed ID: 16934367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of P32 by yellow-fever mosquito larvae of equal age, and those pupating synchronously: its loss and transfer during development, mating, and oviposition.
    Quraishi MS
    J Econ Entomol; 1968 Apr; 61(2):530-3. PubMed ID: 5642119
    [No Abstract]   [Full Text] [Related]  

  • 14. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression.
    Nishiura JT; Ray K; Murray J
    Insect Biochem Mol Biol; 2005 Jun; 35(6):561-73. PubMed ID: 15857762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti.
    Boudko DY; Tsujimoto H; Rodriguez SD; Meleshkevitch EA; Price DP; Drake LL; Hansen IA
    Nat Commun; 2015 Oct; 6():8546. PubMed ID: 26449545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses.
    Zhou JJ; He XL; Pickett JA; Field LM
    Insect Mol Biol; 2008 Apr; 17(2):147-63. PubMed ID: 18353104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti.
    Fawaz EY; Allan SA; Bernier UR; Obenauer PJ; Diclaro JW
    J Vector Ecol; 2014 Dec; 39(2):347-54. PubMed ID: 25424264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid partition in excreta of ageing female Aedes aegypti mosquitoes.
    Thayer DW; Terzian LA
    J Insect Physiol; 1971 Sep; 17(9):1731-4. PubMed ID: 5111038
    [No Abstract]   [Full Text] [Related]  

  • 19. Glutathione biosynthesis in the aging adult yellow-fever mosquito [Aedes aegypti (Louisville)].
    Hazelton GA; Lang CA
    Biochem J; 1983 Feb; 210(2):289-95. PubMed ID: 6860301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): effects of amino acids, dicarboxylic acids, and glucose on the transepithelial voltage and strong luminal alkalinization.
    Izeirovski S; Moffett SB; Moffett DF; Onken H
    J Exp Zool A Ecol Genet Physiol; 2009 Nov; 311(9):719-26. PubMed ID: 19637352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.