These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5379985)

  • 1. [Behavior of segments of the spinal medulla transplanted in the subcutaneous tissue of adult newts in autoplastic and homoplastic conditions].
    Filoni S; Margotta V
    Acta Embryol Exp (Palermo); 1969; 2():169-96. PubMed ID: 5379985
    [No Abstract]   [Full Text] [Related]  

  • 2. [Further observations on autoplastic and homoplastic transplants of spinal medulla in adult tritons].
    Margotta V; Filoni S
    Acta Embryol Exp (Palermo); 1970; 2():151-62. PubMed ID: 5495674
    [No Abstract]   [Full Text] [Related]  

  • 3. [Heterotopic homoplastic transplantation of spinal cord segments in the adult newt. Phenomena of degeneration and regeneration].
    Margotta V; Filoni S
    Arch Biol (Liege); 1969; 80(3):347-68. PubMed ID: 5401760
    [No Abstract]   [Full Text] [Related]  

  • 4. Autoimmunity and central nervous system regeneration in urodele amphibians.
    Margotta V; Filoni S; Venturini G; Lauro GM; Scorsini D; Palladini G
    J Hirnforsch; 1989; 30(1):99-106. PubMed ID: 2723417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double step neural transplants to replace degenerated motoneurons.
    Nothias F; Horvat JC; Mira JC; Pécot-Dechavassine M; Peschanski M
    Prog Brain Res; 1990; 82():239-46. PubMed ID: 2290939
    [No Abstract]   [Full Text] [Related]  

  • 6. Reinnervation of the biceps brachii muscle following cotransplantation of fetal spinal cord and autologous peripheral nerve into the injured cervical spinal cord of the adult rat.
    Duchossoy Y; Kassar-Duchossoy L; Orsal D; Stettler O; Horvat JC
    Exp Neurol; 2001 Feb; 167(2):329-40. PubMed ID: 11161621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of function by replacement of spinal cord segments in the rat.
    Iwashita Y; Kawaguchi S; Murata M
    Nature; 1994 Jan; 367(6459):167-70. PubMed ID: 8114911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of spinal cord fragments and limbs deplanted in the dorsal fin of urodele larvae.
    Székely G; Czéh G
    Acta Physiol Acad Sci Hung; 1971; 40(3):303-12. PubMed ID: 5147953
    [No Abstract]   [Full Text] [Related]  

  • 10. Regeneration of larval urodele limbs containing homoplastic transplants.
    Foret JE
    J Exp Zool; 1970 Nov; 175(3):297-321. PubMed ID: 5478936
    [No Abstract]   [Full Text] [Related]  

  • 11. Neurotrophic dependence of the lateral-line sensory organs of the newt, Triturus viridescens.
    Jones DP; Singer M
    J Exp Zool; 1969 Aug; 171(4):433-42. PubMed ID: 4900218
    [No Abstract]   [Full Text] [Related]  

  • 12. The use of embryonic spinal cord grafts to replace identified motoneuron pools depleted by a neurotoxic lectin, volkensin.
    Nógrádi A; Vrbová G
    Exp Neurol; 1994 Sep; 129(1):130-41. PubMed ID: 7925835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation.
    Lemons ML; Howland DR; Anderson DK
    Exp Neurol; 1999 Nov; 160(1):51-65. PubMed ID: 10630190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury.
    Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R
    Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery.
    Verdú E; García-Alías G; Forés J; López-Vales R; Navarro X
    Glia; 2003 May; 42(3):275-86. PubMed ID: 12673833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urodele spinal cord regeneration and related processes.
    Chernoff EA; Stocum DL; Nye HL; Cameron JA
    Dev Dyn; 2003 Feb; 226(2):295-307. PubMed ID: 12557207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord.
    Xu XM; Guénard V; Kleitman N; Aebischer P; Bunge MB
    Exp Neurol; 1995 Aug; 134(2):261-72. PubMed ID: 7556546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.