These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 5379985)

  • 21. In vitro pre-degenerated nerve autografts support CNS axonal regeneration.
    Decherchi P; Gauthier P
    Brain Res; 1996 Jul; 726(1-2):181-8. PubMed ID: 8836559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The developmental characteristics of the embryonic anlagen of rat neocortex and spinal cord when transplanted into the distal end of the dissected sciatic nerve of adult animals].
    Petrova ES; Chumasov EI; Otellin VA
    Tsitologiia; 1997; 39(9):784-8. PubMed ID: 9518386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survival and functioning of autoplastic, homoplastic and xenoplastic pituitary grafts in the red-spotted newt.
    Dent JN
    J Endocrinol; 1970 Apr; 46(4):435-43. PubMed ID: 4910141
    [No Abstract]   [Full Text] [Related]  

  • 24. Spinal cord regeneration: a phenomenon unique to urodeles?
    Chernoff EA
    Int J Dev Biol; 1996 Aug; 40(4):823-31. PubMed ID: 8877457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord.
    Wu S; Suzuki Y; Ejiri Y; Noda T; Bai H; Kitada M; Kataoka K; Ohta M; Chou H; Ide C
    J Neurosci Res; 2003 May; 72(3):343-51. PubMed ID: 12692901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Further studies of the regeneration of the spinal cord of Pleurodeles Waltli Michah. (1830)].
    Schönheit B; Rehmer H
    Z Mikrosk Anat Forsch; 1968; 79(2):389-401. PubMed ID: 5744269
    [No Abstract]   [Full Text] [Related]  

  • 27. Autologous olfactory ensheathing cell transplantation in human spinal cord injury.
    Féron F; Perry C; Cochrane J; Licina P; Nowitzke A; Urquhart S; Geraghty T; Mackay-Sim A
    Brain; 2005 Dec; 128(Pt 12):2951-60. PubMed ID: 16219671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.
    Xu XM; Guénard V; Kleitman N; Bunge MB
    J Comp Neurol; 1995 Jan; 351(1):145-60. PubMed ID: 7896937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal cord repair. A question of making it work.
    Björklund A
    Nature; 1994 Jan; 367(6459):112-3. PubMed ID: 8114906
    [No Abstract]   [Full Text] [Related]  

  • 30. Developmental potential of radial glia investigated by transplantation into the developing rat ventricular system in utero.
    McMahon SS; McDermott KW
    Exp Neurol; 2007 Jan; 203(1):128-36. PubMed ID: 17010971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional reconnections established by central respiratory neurons regenerating axons into a nerve graft bridging the respiratory centers to the cervical spinal cord.
    Gauthier P; Réga P; Lammari-Barreault N; Polentes J
    J Neurosci Res; 2002 Oct; 70(1):65-81. PubMed ID: 12237865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter.
    Han SS; Liu Y; Tyler-Polsz C; Rao MS; Fischer I
    Glia; 2004 Jan; 45(1):1-16. PubMed ID: 14648541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats.
    Novikova LN; Novikov LN; Kellerth JO
    J Comp Neurol; 2002 Oct; 452(3):255-63. PubMed ID: 12353221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Spinal cord reconstruction and neural transplants. New therapeutic vectors].
    Horvat JC
    Bull Acad Natl Med; 1994 Mar; 178(3):455-63; discussion 464. PubMed ID: 8076186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord.
    Yan J; Welsh AM; Bora SH; Snyder EY; Koliatsos VE
    J Comp Neurol; 2004 Nov; 480(1):101-14. PubMed ID: 15514921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological investigations of neurotransplant-mediated recovery after spinal cord injury.
    Skinner RD; Houle JD; Reese NB; Garcia-Rill EE
    Adv Neurol; 1997; 72():277-90. PubMed ID: 8993705
    [No Abstract]   [Full Text] [Related]  

  • 38. The acquisition of dark avoidance by transplantation of the forebrain of trained newts (Pleurodeles waltl).
    Hershkowitz M; Segal M; Samuel D
    Brain Res; 1972 Dec; 48():366-9. PubMed ID: 4645211
    [No Abstract]   [Full Text] [Related]  

  • 39. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.
    Kamei N; Tanaka N; Oishi Y; Hamasaki T; Nakanishi K; Sakai N; Ochi M
    Spine (Phila Pa 1976); 2007 May; 32(12):1272-8. PubMed ID: 17515814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):13-25. PubMed ID: 9398446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.