These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 5379986)

  • 1. Effects of rotating neural tissue and underlying mesoderm in Xenopus laevis embryos.
    Hunt PM
    Acta Embryol Exp (Palermo); 1969; 2():211-29. PubMed ID: 5379986
    [No Abstract]   [Full Text] [Related]  

  • 2. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy.
    Schroeder TE
    J Embryol Exp Morphol; 1970 Apr; 23(2):427-62. PubMed ID: 5449482
    [No Abstract]   [Full Text] [Related]  

  • 3. Differentiation capacities of the prospective tail somite region of the neural plate in the embryos of Ambystoma mexicanum.
    Niazi IA
    J Embryol Exp Morphol; 1969 Aug; 22(1):1-14. PubMed ID: 5804906
    [No Abstract]   [Full Text] [Related]  

  • 4. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reinvestigation of some of the tissue movements involved in the formation of the neural tube and the eye/lens system of Triturus alpestris and Xenopus laevis.
    Lowery RS
    J Embryol Exp Morphol; 1966 Dec; 16(3):431-8. PubMed ID: 5962694
    [No Abstract]   [Full Text] [Related]  

  • 6. Hanging drop culture of Xenopus laevis neural crest.
    Andrew A; Gabie V
    Acta Embryol Exp (Palermo); 1969; 2():123-36. PubMed ID: 5393214
    [No Abstract]   [Full Text] [Related]  

  • 7. Staging of pigment cells in cultures of Xenopus laevis neural crest.
    Gabie V; Andrew A
    Acta Embryol Exp (Palermo); 1969; 2():137-46. PubMed ID: 5393215
    [No Abstract]   [Full Text] [Related]  

  • 8. Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system.
    Doniach T
    J Neurobiol; 1993 Oct; 24(10):1256-75. PubMed ID: 8228959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural induction and patterning in embryos deficient in FGF signaling.
    Godsave SF; Durston AJ
    Int J Dev Biol; 1997 Feb; 41(1):57-65. PubMed ID: 9074938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the earliest spontaneous activity of the chick embryo.
    Alconero BB
    J Embryol Exp Morphol; 1965 Jun; 13(3):255-66. PubMed ID: 5847448
    [No Abstract]   [Full Text] [Related]  

  • 11. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
    Mancilla A; Mayor R
    Dev Biol; 1996 Aug; 177(2):580-9. PubMed ID: 8806833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus.
    Fletcher RB; Baker JC; Harland RM
    Development; 2006 May; 133(9):1703-14. PubMed ID: 16554360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presumptive floor plate (notoplate) induces behaviors associated with convergent extension in medial but not lateral neural plate cells of Xenopus.
    Ezin AM; Skoglund P; Keller R
    Dev Biol; 2006 Dec; 300(2):670-86. PubMed ID: 17034782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE RELATIONSHIP BETWEEN SIZE AND VASCULARITY IN THE SPINAL CORD OF DEVELOPING XENOPUS LAEVIS.
    SIMS RT
    J Embryol Exp Morphol; 1964 Sep; 12():491-9. PubMed ID: 14207034
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes in the ultrastructure of neural tube cells and the notochordal sheath of ultraviolet irradiated Xenopus laevis embryos.
    Jurand A; Malacinski GM
    Acta Embryol Morphol Exp (Halocynthia Assoc); 1983 May; 4(1):3-16. PubMed ID: 6670436
    [No Abstract]   [Full Text] [Related]  

  • 16. Tissue interactions during axial structure pattern formation in amphibia.
    Malacinski GM; Youn BW; Jurand A
    Scan Electron Microsc; 1981; (Pt 2):307-18. PubMed ID: 7034171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis.
    Davies CS; Messenger NJ; Craig R; Warner AE
    Dev Biol; 1996 Mar; 174(2):431-47. PubMed ID: 8631513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors responsible for the establishment of the body plan in the amphibian embryo.
    Grunz H
    Int J Dev Biol; 1996 Feb; 40(1):279-89. PubMed ID: 8735939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos.
    Fredieu JR; Cui Y; Maier D; Danilchik MV; Christian JL
    Dev Biol; 1997 Jun; 186(1):100-14. PubMed ID: 9188756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.