These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 5380011)
41. O-phosphoserine phosphatase from bovine brain and kidney. High molecular weight forms occurring during the purification. Paoli A; Guiraud P; Brunel C Biochim Biophys Acta; 1974 Dec; 370(2):487-97. PubMed ID: 4374244 [No Abstract] [Full Text] [Related]
42. The preparation and kinetic properties of multiple forms of chicken brain acetylcholinesterase. al-Jafari AA; Kamal MA Cell Biochem Funct; 1994 Jan; 12(1):29-35. PubMed ID: 8168228 [TBL] [Abstract][Full Text] [Related]
43. A fatty acid gamma-hydroxylation system solubilized from porcine kidney cortex microsomes. Ichihara K; Kusunose E; Kusunose M Biochim Biophys Acta; 1971 Jul; 239(2):178-89. PubMed ID: 4399152 [No Abstract] [Full Text] [Related]
44. Particulate diadenosine 5',5"'-P1,P3-triphosphate hydrolases in rat brain: two specific dinucleoside triphosphatases and two phosphodiesterase I-like hydrolases. García-Agúndez J; Cameselle JC; Costas MJ; Sillero MA; Sillero A Biochim Biophys Acta; 1991 Mar; 1073(2):402-9. PubMed ID: 1849011 [TBL] [Abstract][Full Text] [Related]
46. Guanine deaminase in rat liver and mouse liver and brain. Kumar KS; Sitaramayya A; Krishnan PS Biochem J; 1972 Aug; 128(5):1079-88. PubMed ID: 4643694 [TBL] [Abstract][Full Text] [Related]
47. Molecular properties and inhibition kinetics of acetylcholinesterase obtained from rat brain and cockroach ganglion. Singh AK Toxicol Ind Health; 1990 Dec; 6(6):551-70. PubMed ID: 2097819 [TBL] [Abstract][Full Text] [Related]
48. The molecular weight of NADPH-cytochrome C reductase isolated by immunoprecipitation from detergent-solubilized rat liver microsomes. Welton AF; Pederson TC; Buege JA; Aust SD Biochem Biophys Res Commun; 1973 Sep; 54(1):161-7. PubMed ID: 4354940 [No Abstract] [Full Text] [Related]
49. Human erythrocyte acetylcholinesterase. I. Resolution of activity into two components. Shafai T; Cortner JA Biochim Biophys Acta; 1971 Jun; 236(3):612-8. PubMed ID: 5559965 [No Abstract] [Full Text] [Related]
50. Kinetic studies on the thiol protease from Actinidia chinensis. Boland MJ; Hardman MJ FEBS Lett; 1972 Nov; 27(2):282-4. PubMed ID: 4664227 [No Abstract] [Full Text] [Related]
52. Cerebral-cortex hexokinase. Comparison of properties of solubilized mitochondrial and cytoplasmic activities. Thompson MF; Bachelard HS Biochem J; 1970 Jun; 118(1):25-34. PubMed ID: 5472153 [TBL] [Abstract][Full Text] [Related]
53. Separation of multiple molecular forms of acetylcholinesterase by using affinity chromatography: isolation of the 'secretory' form [proceedings]. Hodgson AJ; Chubb IW; Smith AD Biochem Soc Trans; 1978; 6(3):648-9. PubMed ID: 669038 [No Abstract] [Full Text] [Related]
54. On the mechanism of stimulation of AMP-aminohydrolase activity by hexokinase in brain tissue. Haroutunian AV; Buniatian HC J Neurochem; 1974 Aug; 23(2):297-302. PubMed ID: 4608216 [No Abstract] [Full Text] [Related]
55. The preparation of acetylcholinesterase from human erthrocytes. Wright DL; Plummer DT Biochem J; 1970 Jun; 118(2):21P. PubMed ID: 5484665 [No Abstract] [Full Text] [Related]
56. Arylsulphatases in human brain: separation, purification, and certain properties of the two soluble arylsulphatases. Harinath BC; Robins E J Neurochem; 1971 Feb; 18(2):245-57. PubMed ID: 5550090 [No Abstract] [Full Text] [Related]
57. Some properties of soluble and solubilized particle-bound hexokinase. Bigl V; Müller L; Biesold D J Neurochem; 1971 May; 18(5):721-7. PubMed ID: 5004254 [No Abstract] [Full Text] [Related]