BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 5386162)

  • 1. Photochemical oxygen evolution by Chlorella fusca in glucose.
    Paschinger H
    Arch Mikrobiol; 1969; 67(3):243-50. PubMed ID: 5386162
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of reduced exogenous organic compounds in the physiology of the blue-green bacteria (algae): photoheterotrophic growth of a "heterotrophic" blue-green bacterium.
    Ingram LO; Calder JA; Van Baalen C; Plucker FE; Parker PL
    J Bacteriol; 1973 May; 114(2):695-700. PubMed ID: 4196252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nitrate dependence of the inhibition of photosynthesis by carbon monoxide in Chlorella.
    Vennesland B; Jetschmann C
    Arch Biochem Biophys; 1971 May; 144(1):428-37. PubMed ID: 5117534
    [No Abstract]   [Full Text] [Related]  

  • 4. Fermentation of glucose by Chlorella.
    Begum F; Syrett PJ
    Arch Mikrobiol; 1970; 72(4):344-52. PubMed ID: 5474132
    [No Abstract]   [Full Text] [Related]  

  • 5. [Physiological and biochemical contributions to the taxonomy of the genus Chlorella. VI. Utilization of organic carbon compounds].
    Kessler E
    Arch Mikrobiol; 1972; 85(2):153-8. PubMed ID: 5073231
    [No Abstract]   [Full Text] [Related]  

  • 6. Reversion of Scenedesmus photosynthetic mutants.
    Raps S
    Biochim Biophys Acta; 1973 May; 305(2):384-9. PubMed ID: 4741136
    [No Abstract]   [Full Text] [Related]  

  • 7. [Carbohydrate turnover in Chlorella influenced by blue and red light].
    Laudenbach B; Pirson A
    Arch Mikrobiol; 1969; 67(3):226-42. PubMed ID: 5386161
    [No Abstract]   [Full Text] [Related]  

  • 8. The effects of carbon dioxide concentration on oxygen evolution and fluorescence transients in synchronous cultures of Chlorella pyrenoidosa.
    Slovacek RE; Bannister TT
    Biochim Biophys Acta; 1973 Apr; 292(3):729-40. PubMed ID: 4705451
    [No Abstract]   [Full Text] [Related]  

  • 9. Permanent automatic synchronization of micro algae achieved by photoelectrically controlled dilution.
    Pfau J; Werthmüller K; Senger H
    Arch Mikrobiol; 1971; 75(4):338-45. PubMed ID: 5549358
    [No Abstract]   [Full Text] [Related]  

  • 10. Degradation of uracil by synchronous cultures of Chlorella fusca.
    Knutsen G
    Biochim Biophys Acta; 1972 May; 269(3):333-43. PubMed ID: 5039538
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulatory effects of ammonia on carbon metabolism in Chlorella pyrenoidosa during photosynthesis and respiration.
    Kanazawa T; Kanazawa K; Kirk MR; Bassham JA
    Biochim Biophys Acta; 1972 Mar; 256(3):656-69. PubMed ID: 5020236
    [No Abstract]   [Full Text] [Related]  

  • 12. Anti-insulin action of cortisol. 2. Comparison of the influence of cortisol on the metabolism of glucose, fructose, mannose and galactose.
    Plager JE; Matsui N; Ariyoshi Y
    Endocrinology; 1969 Jun; 84(6):1450-5. PubMed ID: 5781128
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of short dark periods on CO 2 uptake and carboxylation of phosphoenolpyruvate during the photosynthetic induction period in Chlorella vulgaris].
    Döhler G
    Arch Mikrobiol; 1973 Apr; 90(4):333-41. PubMed ID: 4701701
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidation of sugars, other than glucose, by isolated mammalian islets of Langerhans.
    Jarrett RJ; Keen H
    Metabolism; 1968 Feb; 17(2):155-7. PubMed ID: 4868055
    [No Abstract]   [Full Text] [Related]  

  • 15. [On the concentration dependency of the uptake of various sugars by Chlorella pyrenoidosa].
    Hülsen W; Prenzel U
    Z Naturforsch B; 1967 Jun; 22(6):683-4. PubMed ID: 4384358
    [No Abstract]   [Full Text] [Related]  

  • 16. Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction.
    Bassham JA; Krause GH
    Biochim Biophys Acta; 1969 Oct; 189(2):207-21. PubMed ID: 5350447
    [No Abstract]   [Full Text] [Related]  

  • 17. The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris.
    Nichols BW; Moorhouse R
    Lipids; 1969 Sep; 4(5):311-6. PubMed ID: 5823710
    [No Abstract]   [Full Text] [Related]  

  • 18. [Utilization of some hexoses by tissue cells in vitro].
    Rerabek J
    Enzymologia; 1965 Nov; 29(3):233-50. PubMed ID: 5884311
    [No Abstract]   [Full Text] [Related]  

  • 19. Respiratory increase and active hexose uptake of Chlorella vulgaris.
    Decker M; Tanner W
    Biochim Biophys Acta; 1972 Jun; 266(3):661-9. PubMed ID: 5040250
    [No Abstract]   [Full Text] [Related]  

  • 20. Utilization of sugars by Chlorella under various conditions.
    Rodríguez-López M
    J Gen Microbiol; 1966 Apr; 43(1):139-43. PubMed ID: 5953823
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.