These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 5386183)
1. Kinetics of thiamin cleavage by sulphite. Leichter J; Joslyn MA Biochem J; 1969 Jul; 113(4):611-5. PubMed ID: 5386183 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of bisulphite cleavage of the three biological phosphorylated derivatives of thiamine. Jaroensanti J; Panijpan B Int J Vitam Nutr Res; 1981; 51(1):34-8. PubMed ID: 7239796 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and mechanism of the cleavage of thiamin, 2-(1-hydroxyethyl)thiamin, and a derivative by bisulfite ion in aqueous solution. Evidence for an intermediate. Zoltewicz JA; Kauffmann GM J Am Chem Soc; 1977 Apr; 99(9):3134-42. PubMed ID: 850046 [No Abstract] [Full Text] [Related]
4. Effect of bisulfite and caffeic acid on thiamin cleavage. Bitsch I; Egoramaiphol S J Med Assoc Thai; 1986 Oct; 69(10):513-7. PubMed ID: 3819607 [No Abstract] [Full Text] [Related]
5. Kinetics of degradation of cefazolin and cephalexin in aqueous solution. Rattie ES; Guttman DE; Ravin LJ Arzneimittelforschung; 1978; 28(6):944-8. PubMed ID: 35181 [TBL] [Abstract][Full Text] [Related]
6. Determination of free and reversibly bound sulphite in foods by reverse-phase, ion-pairing high-performance liquid chromatography. Warner CR; Daniels DH; Fitzgerald MC; Joe FL; Diachenko GW Food Addit Contam; 1990; 7(5):575-81. PubMed ID: 2174807 [TBL] [Abstract][Full Text] [Related]
7. Chemical interactions between thiamin and tannic acid. I. Kinetics, oxygen dependence and inhibition by ascorbic acid. Rungruangsak K; Tosukhowong P; Panijpan B; Vimokesant SL Am J Clin Nutr; 1977 Oct; 30(10):1680-5. PubMed ID: 910744 [TBL] [Abstract][Full Text] [Related]
8. The effect of additives on the free radical formation in aqueous solutions of ascorbic acid. Kalus WH; Filby WG Int J Vitam Nutr Res; 1977; 47(3):258-64. PubMed ID: 21144 [TBL] [Abstract][Full Text] [Related]
9. Can heatstable antithiamin factors inactivate thiamin in vitro and/or in vivo? Hayakawa F; Urabe K; Hilker D; Murata K Int J Vitam Nutr Res; 1986; 56(1):65-72. PubMed ID: 3710720 [TBL] [Abstract][Full Text] [Related]
10. Chemical interactions between thiamin and tannic acid. II. Separation of products. Kositawattanakul T; Tosukhowong P; Vimokesant SL; Panijpan B Am J Clin Nutr; 1977 Oct; 30(10):1686-91. PubMed ID: 20773 [TBL] [Abstract][Full Text] [Related]
11. Stability of thiamin in parenteral nutrition solutions. Bowman BB; Nguyen P JPEN J Parenter Enteral Nutr; 1983; 7(6):567-8. PubMed ID: 6418915 [TBL] [Abstract][Full Text] [Related]
12. Properties of the thiamin triphosphate-synthesizing activity catalyzed by adenylate kinase (isoenzyme 1). Shikata H; Egi Y; Koyama S; Yamada K; Kawasaki T Biochem Int; 1989 May; 18(5):943-9. PubMed ID: 2551298 [TBL] [Abstract][Full Text] [Related]
13. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Voelker AL; Miller J; Running CA; Taylor LS; Mauer LJ Food Res Int; 2018 Oct; 112():443-456. PubMed ID: 30131156 [TBL] [Abstract][Full Text] [Related]
14. Cooking losses of thiamin in food and its nutritional significance. Kimura M; Itokawa Y; Fujiwara M J Nutr Sci Vitaminol (Tokyo); 1990; 36 Suppl 1():S17-24. PubMed ID: 2081984 [TBL] [Abstract][Full Text] [Related]
15. Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. Voelker AL; Taylor LS; Mauer LJ BMC Chem; 2021 Aug; 15(1):47. PubMed ID: 34384471 [TBL] [Abstract][Full Text] [Related]
16. The rates of the spontaneous hydration of CO2 and the reciprocal reaction in neutral aqueous solutions between 0 degrees and 38 degrees. Magid E; Turbeck BO Biochim Biophys Acta; 1968 Oct; 165(3):515-24. PubMed ID: 5737942 [No Abstract] [Full Text] [Related]
17. Use of the sulphite adduct of nicotinamide-adenine dinucleotide to study ionizations and the kinetics of lactate dehydrogenase and malate dehydrogenase. Parker DM; Lodola A; Holbrook JJ Biochem J; 1978 Sep; 173(3):959-67. PubMed ID: 30452 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics and kinetics of covalent addition of bisulfite ion to pyrimidinium ions. Pitman IH; Ziser MA J Pharm Sci; 1970 Sep; 59(9):1295-300. PubMed ID: 5469794 [No Abstract] [Full Text] [Related]
19. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755 [TBL] [Abstract][Full Text] [Related]
20. Cleavage of thiamine by chlorine in tap water. Yagi N; Itokawa Y J Nutr Sci Vitaminol (Tokyo); 1979; 25(4):281-87. PubMed ID: 42668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]