These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 5391475)

  • 1. Configurational specificity: unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis. I. Reversal of hydrolysis by alpha-, beta- and glucoamylases with donors of correct anomeric form.
    Hehre EJ; Okada G; Genghof DS
    Arch Biochem Biophys; 1969 Dec; 135(1):74-89. PubMed ID: 5391475
    [No Abstract]   [Full Text] [Related]  

  • 2. The structural analysis and enzymic synthesis of a pentasaccharide alpha-limit dextrin formed from amylopectin by Bacillus subtilis alpha-amylase.
    French D; Smith EE; Whelan WJ
    Carbohydr Res; 1972 Apr; 22(1):123-34. PubMed ID: 4340184
    [No Abstract]   [Full Text] [Related]  

  • 3. [The splitting of glycogen and maltose by rabbit liver gamma-amylase in the presence of various sugars and their derivatives].
    Belen'kiĭ DM; Rozenfel'd EL
    Biokhimiia; 1967; 32(6):1201-8. PubMed ID: 5592920
    [No Abstract]   [Full Text] [Related]  

  • 4. The alpha-amylases as glycosylases, with wider catalytic capacities than envisioned or explained by their representation as hydrolases.
    Hehre EJ; Genghof DS; Okada G
    Arch Biochem Biophys; 1971 Jan; 142(1):382-93. PubMed ID: 4993542
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification of glucoamylase by acarbose (BAY g-5421) affinity chromatography.
    Ono K; Smith EE
    Biotechnol Appl Biochem; 1986; 8(2-3):201-9. PubMed ID: 3091050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Di- and oligosaccharide substrate specificities and subsite binding energies of pig intestinal glucoamylase-maltase.
    Günther S; Heymann H
    Arch Biochem Biophys; 1998 Jun; 354(1):111-6. PubMed ID: 9633604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous high-performance liquid chromatographic determination of both the cleavage pattern and the stereochemical outcome of the hydrolysis reactions catalyzed by various glycosidases.
    Braun C; Meinke A; Ziser L; Withers SG
    Anal Biochem; 1993 Jul; 212(1):259-62. PubMed ID: 8368500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Porcine pancreatic alpha-amylase].
    Sakano Y; Taniguchi H; Okada G; Ohnishi M
    Tanpakushitsu Kakusan Koso; 1985 Apr; 30(4):299-302. PubMed ID: 3874407
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of pullulanase by Schardinger dextrins.
    Marshall JJ
    FEBS Lett; 1973 Dec; 37(2):269-73. PubMed ID: 4763333
    [No Abstract]   [Full Text] [Related]  

  • 10. Observations on the structure of pullulan.
    Catley BJ; Whelan WJ
    Arch Biochem Biophys; 1971 Mar; 143(1):138-42. PubMed ID: 4327233
    [No Abstract]   [Full Text] [Related]  

  • 11. Acid and neutral poly- and oligoglucosidases in animal tissues.
    Rosenfeld EL; Lukomskaya IS; Popova IA
    Enzymologia; 1966 Jan; 30(1):1-11. PubMed ID: 6005311
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. I. Effect of chain length of linear substrates.
    Nitta Y; Mizushima M; Hiromi K; Ono S
    J Biochem; 1971 Mar; 69(3):567-76. PubMed ID: 5551648
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S; Sohier JS; Feller G
    J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymatic hydrolysis of substituted phenyl-alpha-D-mannopyranosides].
    Vervoort A; van Kerckhove M
    Arch Int Physiol Biochim; 1970 Aug; 78(3):607-8. PubMed ID: 4098033
    [No Abstract]   [Full Text] [Related]  

  • 15. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-beta-D-glucosides.
    Varrot A; Yip VL; Li Y; Rajan SS; Yang X; Anderson WF; Thompson J; Withers SG; Davies GJ
    J Mol Biol; 2005 Feb; 346(2):423-35. PubMed ID: 15670594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of complex oligosaccharides by using a mutated (1,3)-beta-D-glucan endohydrolase from barley.
    Fairweather JK; Hrmova M; Rutten SJ; Fincher GB; Driguez H
    Chemistry; 2003 Jun; 9(11):2603-10. PubMed ID: 12794903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of sterically crowded derivatives of anomeric pairs of D-glucose disaccharides.
    Mendonca S; Laine RA
    Carbohydr Res; 2005 Sep; 340(12):2055-9. PubMed ID: 15996644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of covalent beta-linked carbohydrate-enzyme intermediates during the reactions catalyzed by alpha-amylases.
    Yoon SH; Bruce Fulton D; Robyt JF
    Carbohydr Res; 2007 Jan; 342(1):55-64. PubMed ID: 17123489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomeric configuration, glycosidic linkage, and the solution conformational entropy of O-linked disaccharides.
    Striegel AM
    J Am Chem Soc; 2003 Apr; 125(14):4146-8. PubMed ID: 12670236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action pattern and specificity of an exo-beta-(1--3)-D-glucanase from basidiomycetes species QM 806.
    Nelson TE; Johnson J; Jantzen E; Kirkwood S
    J Biol Chem; 1969 Nov; 244(21):5972-80. PubMed ID: 5350951
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.