These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 5397650)

  • 1. [Reduction of methylene blue by SH-compounds].
    Vishnevskaia ZI; Zhabotinskiĭ AM
    Biofizika; 1969; 14(2):228-32. PubMed ID: 5397650
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrochemical behaviors of sulfhydryl compounds in the presence of elemental mercury.
    Yamamoto M; Charoenraks T; Pan-Hou H; Nakano A; Apilux A; Tabata M
    Chemosphere; 2007 Sep; 69(4):534-9. PubMed ID: 17490713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The active centre of aminopeptidase B. I. The effects of various chemical reagents.
    Mäkinen KK; Hopsu-Havu VK
    Enzymologia; 1967 Jun; 32(6):333-46. PubMed ID: 5621956
    [No Abstract]   [Full Text] [Related]  

  • 4. Photo-oxidation of ornithine carbamyltransferase with methylene blue and with rose bengal.
    Grillo MA
    Ital J Biochem; 1970; 19(1):17-27. PubMed ID: 5429504
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of amino thiols in luminol chemiluminescence coupled with copper(II)-catalysed oxidation of cysteine and glutathione.
    Kamidate T; Kinkou T; Watanabe H
    J Biolumin Chemilumin; 1996; 11(3):123-9. PubMed ID: 8844342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDTA as inhibitor of ferricyanide reduction by glutathione and cysteine.
    Tysarowski W; Konecka A
    Acta Biochim Pol; 1965; 12(3):251-8. PubMed ID: 4956685
    [No Abstract]   [Full Text] [Related]  

  • 7. Cytotoxic interactions of methylene blue with trypanosomatid-specific disulfide reductases and their dithiol products.
    Buchholz K; Comini MA; Wissenbach D; Schirmer RH; Krauth-Siegel RL; Gromer S
    Mol Biochem Parasitol; 2008 Jul; 160(1):65-9. PubMed ID: 18448175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Quantitative analysis of keratin SH-groups in human epidermis (a new micromethod)].
    Morenkova SA; Baĭramov DF; Khalilov EM
    Biull Eksp Biol Med; 1993 May; 115(5):556-7. PubMed ID: 7519068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue.
    Niles JC; Wishnok JS; Tannenbaum SR
    Org Lett; 2001 Apr; 3(7):963-6. PubMed ID: 11277770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selenium catalyzed reduction of methylene blue by thiols.
    Rhead WJ; Schrauzer GN
    Bioinorg Chem; 1974 Apr; 3(3):225-42. PubMed ID: 4424135
    [No Abstract]   [Full Text] [Related]  

  • 11. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats.
    Visarius TM; Stucki JW; Lauterburg BH
    J Pharmacol Exp Ther; 1999 May; 289(2):820-4. PubMed ID: 10215658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1995 Jan; 316(1):52-62. PubMed ID: 7840660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultratrace kinetic measurements of the reduction of methylene blue.
    Hallock AJ; Berman ES; Zare RN
    J Am Chem Soc; 2003 Feb; 125(5):1158-9. PubMed ID: 12553804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system.
    Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R
    Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Cysteine influx and efflux: a possible role for red blood cells in regulation of redox status of the plasma.
    Yildiz D; Uslu C; Cakir Y; Oztas H
    Free Radic Res; 2006 May; 40(5):507-12. PubMed ID: 16551577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-thiolation mimicry: quantitative and kinetic analysis of redox status of protein cysteines by glutathione-affinity chromatography.
    Niture SK; Velu CS; Bailey NI; Srivenugopal KS
    Arch Biochem Biophys; 2005 Dec; 444(2):174-84. PubMed ID: 16297848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Behavior of glutathione and cysteine SH groups during cardiac perfusion in frogs].
    HOLOBUT W; KOLATAJ A
    Acta Physiol Pol; 1960; 11():722-3. PubMed ID: 13715503
    [No Abstract]   [Full Text] [Related]  

  • 19. Use of reducing compounds in the cultivation of Azospirillum sp.
    Venkateswarlu B; Rao AV
    Acta Microbiol Hung; 1983; 30(2):99-102. PubMed ID: 6419535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of methylene blue bound to a DNA-modified electrode.
    Kelley SO; Barton JK; Jackson NM; Hill MG
    Bioconjug Chem; 1997; 8(1):31-7. PubMed ID: 9026032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.