These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 540107)

  • 1. [Sulfate transport across the limiting double membrane or envelope, of spinach chloroplasts].
    Mourioux G; Douce R
    Biochimie; 1979; 61(11-12):1283-92. PubMed ID: 540107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Kinetics of electron transport, proton transfer and photophosphorylation in chloroplasts and their relation to temperature-induced structural changes in the thylakoid membrane].
    Tikhonov AN; Timoshin AA; Bliumenfel'd LA
    Mol Biol (Mosk); 1983; 17(6):1236-48. PubMed ID: 6318072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rates and properties of endogenous cyclic photophosphorylation of isolated intact chloroplasts measured by CO2 fixation in the presence of dihydroxyacetone phosphate.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1976 Jan; 423(1):91-102. PubMed ID: 1247606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Transport of H+ in mitochondria induced by the uptake of sulfite, sulfate and thiosulfate].
    Stipani I; Bonvino V; Schiavulli N; Palmieri F
    Boll Soc Ital Biol Sper; 1981 Jul; 57(13):1430-6. PubMed ID: 6269561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electron paramagnetic resonance of electron transport in photosynthetic systems. XI. Effects of photosynthetic control: dependence of the rate of electron transport on the energization of bean chloroplast thylakoid membrane].
    Khomutov GB; Tikhonov AN; Ruuge EK
    Mol Biol (Mosk); 1981; 15(1):182-98. PubMed ID: 6278291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of inorganic pyrophosphate across the spinach chloroplast envelope.
    Lunn JE; Douce R
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):375-9. PubMed ID: 8383964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination].
    Shmeleva VL; Ivanov BN; Red'ko TP
    Biokhimiia; 1982 Jul; 47(7):1104-7. PubMed ID: 7115816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of sulfite on the ATP hydrolysis and synthesis activities in chloroplasts and cyanobacterial membrane vesicles can be explained by competition with phosphate.
    Bakels RH; Van Wielink JE; Krab K; Van Walraven HS
    Arch Biochem Biophys; 1996 Aug; 332(1):170-4. PubMed ID: 8806722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chloroplast envelope is permeable for maltose but not for maltodextrins.
    Rost S; Frank C; Beck E
    Biochim Biophys Acta; 1996 Dec; 1291(3):221-7. PubMed ID: 8980636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of isoprenoid intermediates across chloroplast envelope membranes.
    Flügge UI; Gao W
    Plant Biol (Stuttg); 2005 Jan; 7(1):91-7. PubMed ID: 15666208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sulphate on glutamate synthesis by intact spinach (Spinacia oleracea) chloroplasts.
    Dumas R; Joyard J; Douce R
    Biochem J; 1989 May; 259(3):769-74. PubMed ID: 2730585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of sulphate transport defective mutants of Candida utilis: further evidence for a common transport system for sulphate, sulphite and thiosulphate.
    García M; Benítez J; Delgado J; Kotyk A
    Folia Microbiol (Praha); 1983; 28(1):1-5. PubMed ID: 6682073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of substrates across the chloroplast envelope.
    Heldt HW
    Horiz Biochem Biophys; 1976; 2():199-299. PubMed ID: 776769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the sesquiterpene lactone tetraesters thapsigargicin and thapsigargin, from roots of Thapsia garganica L., on isolated spinach chloroplasts.
    Santarius KA; Falsone G; Haddad H
    Toxicon; 1987; 25(4):389-99. PubMed ID: 3617076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulphate transport in Candida utilis.
    Benítez JA; Alonso A; Delgado J; Kotyk A
    Folia Microbiol (Praha); 1983; 28(1):6-11. PubMed ID: 6682074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition and uncoupling of photophosphorylation in isolated chloroplasts by organotin, organomercury and diphenyleneiodonium compounds.
    Watling-Payne AS; Selwyn MJ
    Biochem J; 1974 Jul; 142(1):65-74. PubMed ID: 4441373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of membrane-bound ADP and ATP in photophosphorylation in chloroplast membranes.
    Shavit N; Lien S; San Pietro A
    FEBS Lett; 1977 Jan; 73(1):55-8. PubMed ID: 556997
    [No Abstract]   [Full Text] [Related]  

  • 18. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.
    Meyer DD; Andrino FG; Possedente de Lira S; Fornaro A; Corção G; Brandelli A
    Environ Technol; 2016; 37(6):768-73. PubMed ID: 26269005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena.
    Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD
    J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of photophosphorylation by ATP and the role of magnesium in photophosphorylation.
    Komatsu M; Murakami S
    Biochim Biophys Acta; 1976 Jan; 423(1):103-10. PubMed ID: 1247601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.