These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 540180)

  • 1. Global flow equations for membrane transport from local equations of motion-II. The case of a single nonelectrolyte solute plus water.
    Mikulecky DC
    Bull Math Biol; 1979; 41(5):629-40. PubMed ID: 540180
    [No Abstract]   [Full Text] [Related]  

  • 2. Global flow equations for membrane transport from local equations of motion: I. The general case for (n-1) nonelectrolyte solutes plus water.
    Mikulecky DC
    Bull Math Biol; 1978; 40(6):791-805. PubMed ID: 743571
    [No Abstract]   [Full Text] [Related]  

  • 3. A continuum mechanical approach to the flow equations for membrane transport. I. Water flow.
    Mikulecky DC
    Biophys J; 1972 Dec; 12(12):1642-60. PubMed ID: 4655664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [New method of derivation of practical Kedem-Katchalsky membrane transport equations].
    Jarzyńska M
    Polim Med; 2005; 35(4):19-24. PubMed ID: 16619794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of water transport in membranes.
    Meares P
    Philos Trans R Soc Lond B Biol Sci; 1977 Mar; 278(959):113-50. PubMed ID: 17870
    [No Abstract]   [Full Text] [Related]  

  • 6. Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane.
    Slezak A
    Biophys Chem; 1989 Oct; 34(2):91-102. PubMed ID: 2624882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.
    Andreoli TE; Dennis VW; Weigl AM
    J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions.
    Slezak A; Turczyński B
    Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):241-56. PubMed ID: 24596040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On equations for combined convective and diffusive transport of neutral solute across porous membranes.
    Bresler EH; Groome LJ
    Am J Physiol; 1981 Nov; 241(5):F469-76. PubMed ID: 7304743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the Kedem-Katchalsky equations.
    Slezak A; Turczynski B
    Biophys Chem; 1986 Jul; 24(2):173-8. PubMed ID: 3756309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian motion in biological membranes.
    Saffman PG; Delbrück M
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3111-3. PubMed ID: 1059096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.
    Curry MR; Shachar-Hill B; Hill AE
    J Membr Biol; 2001 May; 181(2):115-23. PubMed ID: 11420598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Polaron mechanism of ion transport through membranes].
    Chizmadzhev IuA; Pastushenko VF
    Biofizika; 1981; 26(5):829-33. PubMed ID: 7317465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Kedem-Katchalsky model equations of the volume flux of homogeneous non-electrolyte solutions in double-membrane system.
    Slezak A; Bryll A
    Polim Med; 2004; 34(4):45-52. PubMed ID: 15850297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.