These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 5402023)

  • 21. Membranous systems in the "chloride cell" of teleostean fish gill; their modifications in response to the salinity of the environment.
    Pisam M
    Anat Rec; 1981 Aug; 200(4):401-14. PubMed ID: 7305008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Evolutionary-physiological aspects of adaptation of the Pacific salmon fry of the Oncorhynchus genus to migration to the sea water].
    Maksimovich AA
    Zh Evol Biokhim Fiziol; 2008; 44(1):51-9. PubMed ID: 18411513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Chloride cells of the gills and the interrenal gland of Dasyatis pastinaca (L.) (Elasmobranchii) skates during adaptation to distilled sea water].
    Kraiushkina LS
    Arkh Anat Gistol Embriol; 1981 Jul; 81(7):95-102. PubMed ID: 7295054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptations to osmotic stress in a fresh-water euryhyaline teleost, Tilapia mossambica X. Role of mucopolysaccharides.
    Narasimham C; Parvatheswarao V
    Acta Histochem; 1974; 51(1):37-49. PubMed ID: 4282213
    [No Abstract]   [Full Text] [Related]  

  • 25. Vigorous SO4(2-) influx via the gills is balanced by enhanced SO4(2-) excretion by the kidney in eels after seawater adaptation.
    Watanabe T; Takei Y
    J Exp Biol; 2012 May; 215(Pt 10):1775-81. PubMed ID: 22539745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive branchial mechanisms in the sturgeon Acipenser naccarii during acclimation to saltwater.
    Martínez-Alvarez RM; Sanz A; García-Gallego M; Domezain A; Domezain J; Carmona R; del Valle Ostos-Garrido M; Morales AE
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jun; 141(2):183-90. PubMed ID: 15955717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraintestinal calcium uptake in the killifish, Fundulus heteroclitus.
    Mayer-Gostan N; Bornancin M; DeRenzis G; Naon R; Yee JA; Shew RL; Pang PK
    J Exp Zool; 1983 Sep; 227(3):329-38. PubMed ID: 6227707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of transbranchial potentials in fish [proceedings].
    Bath RN; Eddy FB
    J Physiol; 1978 Dec; 285():4P-5P. PubMed ID: 745101
    [No Abstract]   [Full Text] [Related]  

  • 29. Active branchial and ram gill ventilation in fishes.
    Roberts JL
    Biol Bull; 1975 Feb; 148(1):85-105. PubMed ID: 1115815
    [No Abstract]   [Full Text] [Related]  

  • 30. Control of renal function in freshwater and marine teleosts.
    Nishimura H; Imai M
    Fed Proc; 1982 Jun; 41(8):2355-60. PubMed ID: 7084480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive changes of the water permeability of the teleostean gill epithelium in relation to external salinity.
    Motais R; Isaia J; Rankin JC; Maetz J
    J Exp Biol; 1969 Nov; 51(2):529-46. PubMed ID: 5351427
    [No Abstract]   [Full Text] [Related]  

  • 32. Transepithelial potential measurements in the isolated, perfused head of a marine teleost.
    Claiborne JB; Evans DH
    J Exp Zool; 1984 May; 230(2):321-4. PubMed ID: 6736900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.
    Pisam M; Le Moal C; Auperin B; Prunet P; Rambourg A
    Anat Rec; 1995 Jan; 241(1):13-24. PubMed ID: 7879919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental and environmental regulation of chloride cells in young American shad, Alosa sapidissima.
    Zydlewski J; McCormick SD
    J Exp Zool; 2001 Jul; 290(2):73-87. PubMed ID: 11471137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of adaptation to an electrolyte-deficient medium on chloride cells of the gills in eels].
    Olivereau M
    C R Seances Soc Biol Fil; 1971; 165(5):1009-13. PubMed ID: 4261475
    [No Abstract]   [Full Text] [Related]  

  • 36. Fooling a freshwater fish: how dietary salt transforms the rainbow trout gill into a seawater gill phenotype.
    Perry SF; Rivero-Lopez L; McNeill B; Wilson J
    J Exp Biol; 2006 Dec; 209(Pt 23):4591-6. PubMed ID: 17114394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Ultrastructure of the interrenal gland in young beluga in fresh water and during adaptation to salt water].
    Vasil'eva EV
    Tsitologiia; 1980 Feb; 22(2):144-8. PubMed ID: 7385357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative physiological aspects of water and salt regulation.
    Bernards JA
    Folia Med Neerl; 1972; 15(2):42-50. PubMed ID: 5045670
    [No Abstract]   [Full Text] [Related]  

  • 39. Gross morphology and surface ultrastructure of the gills of Odontesthes argentinensis (Actinopterygii, Atherinopsidae) from a Southwestern Atlantic coastal lagoon.
    Díaz AO; Castro MG; García AM; Díaz de Astarloa JM; Figueroa DE
    Tissue Cell; 2009 Jun; 41(3):193-8. PubMed ID: 19041994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gill remodeling in fish--a new fashion or an ancient secret?
    Nilsson GE
    J Exp Biol; 2007 Jul; 210(Pt 14):2403-9. PubMed ID: 17601943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.