These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 540261)
1. Microbiology of a northern river: bacterial distribution and relationship to suspended sediment and organic carbon. Geesey GG; Costerton JW Can J Microbiol; 1979 Sep; 25(9):1058-62. PubMed ID: 540261 [TBL] [Abstract][Full Text] [Related]
2. Arsenic speciation in the lower Athabasca River watershed: A geochemical investigation of the dissolved and particulate phases. Donner MW; Javed MB; Shotyk W; Francesconi KA; Siddique T Environ Pollut; 2017 May; 224():265-274. PubMed ID: 28216136 [TBL] [Abstract][Full Text] [Related]
3. Relative microbial activity and bacterial concentrations in water and sediment samples taken in the Beaufort Sea. Griffiths RP; Hayasaka SS; McNamara TM; Morita RY Can J Microbiol; 1978 Oct; 24(10):1217-26. PubMed ID: 728851 [TBL] [Abstract][Full Text] [Related]
4. [Relationship between bacteria decomposing organic substances and water pollution in river water]. Wada M Nihon Eiseigaku Zasshi; 1994 Oct; 49(4):782-90. PubMed ID: 7807705 [TBL] [Abstract][Full Text] [Related]
5. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Emelko MB; Stone M; Silins U; Allin D; Collins AL; Williams CH; Martens AM; Bladon KD Glob Chang Biol; 2016 Mar; 22(3):1168-84. PubMed ID: 26313547 [TBL] [Abstract][Full Text] [Related]
6. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates. Timoney KP; Lee P Environ Sci Technol; 2011 May; 45(10):4278-84. PubMed ID: 21520949 [TBL] [Abstract][Full Text] [Related]
7. [Spatial distribution patterns of heterotrophic, nitrogen, and phosphate bacteria in hypoxic zone of Yangtze River Estuary]. Du P; Liu JJ; Zeng JN; Chen QZ; Jiang ZB; Zhu XY Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1316-24. PubMed ID: 21812312 [TBL] [Abstract][Full Text] [Related]
8. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes. Keshri J; Pradeep Ram AS; Sime-Ngando T Microb Ecol; 2018 Apr; 75(3):662-673. PubMed ID: 28920165 [TBL] [Abstract][Full Text] [Related]
9. Accumulated state assessment of the Peace-Athabasca-Slave River system. Dubé MG; Wilson JE Integr Environ Assess Manag; 2013 Jul; 9(3):405-25. PubMed ID: 22888030 [TBL] [Abstract][Full Text] [Related]
10. The populations, characterization and activity of suspended bacteria in the Welsh River Dee. Nuttall D J Appl Bacteriol; 1982 Aug; 53(1):49-59. PubMed ID: 6757240 [No Abstract] [Full Text] [Related]
11. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413 [TBL] [Abstract][Full Text] [Related]
12. Effect of water-sediment regulation of the Xiaolangdi reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River. Xia X; Dong J; Wang M; Xie H; Xia N; Li H; Zhang X; Mou X; Wen J; Bao Y Sci Total Environ; 2016 Nov; 571():487-97. PubMed ID: 27401281 [TBL] [Abstract][Full Text] [Related]
13. Glucose flux at the sediment-water interface of Toronto Harbour, Lake Ontario, with reference to pollution stress. Wood LW; Chua KE Can J Microbiol; 1973 Apr; 19(4):413-20. PubMed ID: 4700350 [No Abstract] [Full Text] [Related]
14. Initial environmental impacts of the Obed Mountain coal mine process water spill into the Athabasca River (Alberta, Canada). Cooke CA; Schwindt C; Davies M; Donahue WF; Azim E Sci Total Environ; 2016 Jul; 557-558():502-9. PubMed ID: 27017080 [TBL] [Abstract][Full Text] [Related]
15. Distribution of autotrophic nitrifying bacteria in a polluted river (the Passaic). Matulewich VA; Finstein MS Appl Environ Microbiol; 1978 Jan; 35(1):67-71. PubMed ID: 623474 [TBL] [Abstract][Full Text] [Related]
16. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France). Cébron A; Garnier J Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163 [TBL] [Abstract][Full Text] [Related]
17. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Batsaikhan B; Kwon JS; Kim KH; Lee YJ; Lee JH; Badarch M; Yun ST Environ Sci Pollut Res Int; 2017 Jan; 24(2):2019-2034. PubMed ID: 27807785 [TBL] [Abstract][Full Text] [Related]
18. The effects of chlorinated municipal sewage and temperature on the abundance of bacteria in the Sheep River, Alberta. Osborne LL; Davies RW; Ventullo RM; Ladd TI; Costerton JW Can J Microbiol; 1983 Feb; 29(2):261-70. PubMed ID: 6850419 [TBL] [Abstract][Full Text] [Related]
19. Low biodegradability of dissolved organic matter and trace metals from subarctic waters. Oleinikova OV; Shirokova LS; Drozdova OY; Lapitskiy SA; Pokrovsky OS Sci Total Environ; 2018 Mar; 618():174-187. PubMed ID: 29128766 [TBL] [Abstract][Full Text] [Related]
20. Selenium in surface waters of the lower Athabasca River watershed: Chemical speciation and implications for aquatic life. Donner MW; Cuss CW; Poesch M; Sinnatamby RN; Shotyk W; Siddique T Environ Pollut; 2018 Dec; 243(Pt B):1343-1351. PubMed ID: 30268985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]