These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 540269)

  • 21. [Ectothiorhodosinus mongolicum gen. nov., sp. nov.,--a new purple sulfur bacterium from soda lake in Mongolia].
    Gorlenko VM; Briantseva IA; Panteleeva EE; Turova TP; Kolganova TV; Makhneva ZK; Moskalenko AA
    Mikrobiologiia; 2004; 73(1):80-8. PubMed ID: 15074045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis of freshwater photosynthetic sulfur bacteria.
    Osuna MB; Casamayor EO
    Curr Microbiol; 2011 Jan; 62(1):111-6. PubMed ID: 20524118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Anoxygenic phototrophic bacteria of the high-altitude meromictic Lake Gek-Gel, Azerbaijan].
    Lunina ON; Kevbrina MV; Akimov VN; Pimenov NV
    Mikrobiologiia; 2008; 77(5):675-82. PubMed ID: 19004350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ determination of sulfide turnover rates in a meromictic alpine lake.
    Lüthy L; Fritz M; Bachofen R
    Appl Environ Microbiol; 2000 Feb; 66(2):712-7. PubMed ID: 10653740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predation impact of ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake.
    Saccà A; Borrego CM; Renda R; Triadó-Margarit X; Bruni V; Guglielmo L
    FEMS Microbiol Ecol; 2009 Oct; 70(1):42-53. PubMed ID: 19622068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ciliates from a fresh water sulfuretum.
    Dyer BD; Gaju N; Pedrós-Alió C; Esteve I; Guerrero R
    Biosystems; 1986; 19(2):127-35. PubMed ID: 3089342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake.
    Bryantseva I; Gorlenko VM; Kompantseva EI; Imhoff JF; Süling J; Mityushina L
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():697-703. PubMed ID: 10319493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides.
    Hirabayashi H; Ishii T; Takaichi S; Inoue K; Uehara K
    Photochem Photobiol; 2004 Mar; 79(3):280-5. PubMed ID: 15115301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium.
    Madigan MT; Brock TD
    J Bacteriol; 1975 May; 122(2):782-4. PubMed ID: 1092670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The irreversible photoreduction of a low potential component at low temperatures in a preparation of the green photosynthetic bacterium Chlorobium thiosulphatophilum.
    Jennings JV; Evans MC
    FEBS Lett; 1977 Mar; 75(1):33-6. PubMed ID: 192591
    [No Abstract]   [Full Text] [Related]  

  • 31. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea.
    Manske AK; Glaeser J; Kuypers MM; Overmann J
    Appl Environ Microbiol; 2005 Dec; 71(12):8049-60. PubMed ID: 16332785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Microbiologic processes in meromictic Lake Sakovo].
    Gorlenko VM; Chebotarev EN
    Mikrobiologiia; 1981; 50(1):134-9. PubMed ID: 6783819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure-induced red shift and broadening of the Qy absorption of main light-harvesting antennae chlorosomes from green photosynthetic bacteria and their dependency upon alkyl substituents of the composite bacteriochlorophylls.
    Mizoguchi T; Kim TY; Sawamura S; Tamiaki H
    J Phys Chem B; 2008 Dec; 112(51):16759-65. PubMed ID: 19367895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha].
    Gorlenko VM; Vainshtein MB; Chebotarev EN
    Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Photosynthetic oxygen evolution and CO2 photoassimilation by cyanobacteria that form water-bloom spots in a sulfur spring with a high sulfide content].
    Barskiĭ EL; Nikitina KA; Belogurova NG; Gorskaia NV; Gusev MB
    Mikrobiologiia; 1980; 49(2):210-4. PubMed ID: 6446661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitors produced by algae as an ecological factor affecting bacteria in water. II. Antibacterial activity of algae during blooms.
    Chróst RJ
    Acta Microbiol Pol B; 1975; 7(3):167-76. PubMed ID: 811088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation by hot spring phototrophs to reduced light intensities.
    Madigan MT; Brock TD
    Arch Microbiol; 1977 May; 113(1-2):111-20. PubMed ID: 407880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments.
    Ohkouchi N; Nakajima Y; Okada H; Ogawa NO; Suga H; Oguri K; Kitazato H
    Environ Microbiol; 2005 Jul; 7(7):1009-16. PubMed ID: 15946297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthetic pathway in green sulfur bacteria.
    Harada J; Saga Y; Yaeda Y; Oh-Oka H; Tamiaki H
    FEBS Lett; 2005 Mar; 579(9):1983-7. PubMed ID: 15792807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling dark metabolism to electricity generation using photosynthetic cocultures.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2014 Feb; 111(2):223-31. PubMed ID: 23893620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.