BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 5403975)

  • 1. Studies on the mode of oxidation of pyrazolo(3,4-d)pyrimidine by aldehyde oxidase and xanthine oxidase.
    Johns DG; Spector T; Robins RK
    Biochem Pharmacol; 1969 Oct; 18(10):2371-83. PubMed ID: 5403975
    [No Abstract]   [Full Text] [Related]  

  • 2. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins.
    Dixon M
    Biochim Biophys Acta; 1971 Mar; 226(2):269-84. PubMed ID: 4396857
    [No Abstract]   [Full Text] [Related]  

  • 3. A comparison of the specificities of xanthine oxidase and aldehyde oxidase.
    Krenitsky TA; Neil SM; Elion GB; Hitchings GH
    Arch Biochem Biophys; 1972 Jun; 150(2):585-99. PubMed ID: 5044040
    [No Abstract]   [Full Text] [Related]  

  • 4. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers.
    McCord JM; Fridovich I
    J Biol Chem; 1970 Mar; 245(6):1374-7. PubMed ID: 5462997
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidation of 4-hydroxypyrazolo (3,4-d) pyrimidine by xanthine oxidase, the route of electron transfer from substrate to acceptor dyes.
    Spector T; Johns DG
    Biochem Biophys Res Commun; 1968 Sep; 32(6):1039-44. PubMed ID: 5750222
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of ferritin reduction by pyrazolo(3,4d)pyrimidines.
    Duggan DE; Streeter KB
    Arch Biochem Biophys; 1973 May; 156(1):66-70. PubMed ID: 4740962
    [No Abstract]   [Full Text] [Related]  

  • 7. HEPATIC ALDEHYDE OXIDASE. II. DIFFERENTIAL INHIBITION OF ELECTRON TRANSFER TO VARIOUS ELECTRON ACCEPTORS.
    RAJAGOPALAN KV; HANDLER P
    J Biol Chem; 1964 Jun; 239():2022-6. PubMed ID: 14213392
    [No Abstract]   [Full Text] [Related]  

  • 8. The resolution of active and inactive xanthine oxidase by affinity chromatography.
    Edmondson D; Massey V; Palmer G; Beacham LM; Elion GB
    J Biol Chem; 1972 Mar; 247(5):1597-604. PubMed ID: 4335003
    [No Abstract]   [Full Text] [Related]  

  • 9. The existence of nonfunctional active sites in milk xanthine oxidase: reaction with functional active site inhibitors.
    Massey V; Komai H; Palmer G; Elion GB
    Vitam Horm; 1970; 28():505-31. PubMed ID: 4335890
    [No Abstract]   [Full Text] [Related]  

  • 10. The acceptor specificity of flavins and flavoproteins. II. Free flavins.
    Dixon M
    Biochim Biophys Acta; 1971 Mar; 226(2):259-68. PubMed ID: 4324966
    [No Abstract]   [Full Text] [Related]  

  • 11. One-electron transfer reactions in biochemical systems. VII. Two types of electron outlets in milk xanthine oxidase.
    Nakamura M; Yamazaki I
    Biochim Biophys Acta; 1973 Dec; 327(2):247-56. PubMed ID: 4360425
    [No Abstract]   [Full Text] [Related]  

  • 12. 4-Hydroxypyrazolo (3,4-d) pyrimidine as a substrate for xanthine oxidase: loss of conventional substrate activity with catalytic cycling of the enzyme.
    Spector T; Johns DG
    Biochem Biophys Res Commun; 1970 Feb; 38(4):583-9. PubMed ID: 5462699
    [No Abstract]   [Full Text] [Related]  

  • 13. EVIDENCE FOR AEROBIC AND ANAEROBIC MECHANISMS FOR REDUCTION OF CYTOCHROME C BY XANTHINE OXIDASE.
    MURAOKA S; SUGIYAMA M; YAMASAKI H
    Biochem Biophys Res Commun; 1965 Apr; 19():346-50. PubMed ID: 14317400
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidation of 7-aminothiadiazolo(3,4-d)pyrimidines and 7-aminofurazano(3,4-d)pyrimidines by xanthine oxidase and aldehyde oxidase.
    McCormack JJ; Taylor EC
    Biochem Pharmacol; 1975 Sep; 24(17):1636-9. PubMed ID: 172085
    [No Abstract]   [Full Text] [Related]  

  • 15. HEPATIC ALDEHYDE OXIDASE. 3. THE SUBSTRATE-BINDING SITE.
    RAJAGOPALAN KV; HANDLER P
    J Biol Chem; 1964 Jun; 239():2027-35. PubMed ID: 14213393
    [No Abstract]   [Full Text] [Related]  

  • 16. Reactivity of D-amino acid oxidase with artificial electron acceptors.
    Rao NA; Nishikimi M; Yagi K
    Biochim Biophys Acta; 1972 Aug; 276(2):350-62. PubMed ID: 4403528
    [No Abstract]   [Full Text] [Related]  

  • 17. The univalent reduction of oxygen by reduced flavins and quinones.
    Misra HP; Fridovich I
    J Biol Chem; 1972 Jan; 247(1):188-92. PubMed ID: 4401581
    [No Abstract]   [Full Text] [Related]  

  • 18. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver.
    Rashidi MR; Smith JA; Clarke SE; Beedham C
    Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfoxide reductase activity of liver aldehyde oxidase.
    Tatsumi K; Kitamura S; Yamada H
    Biochim Biophys Acta; 1983 Sep; 747(1-2):86-92. PubMed ID: 6688361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies with Triton X-100 treated electron transport particles from Rhodospirillum rubrum.
    Boll M
    Arch Mikrobiol; 1970; 71(1):1-8. PubMed ID: 5457239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.