These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 5403975)
1. Studies on the mode of oxidation of pyrazolo(3,4-d)pyrimidine by aldehyde oxidase and xanthine oxidase. Johns DG; Spector T; Robins RK Biochem Pharmacol; 1969 Oct; 18(10):2371-83. PubMed ID: 5403975 [No Abstract] [Full Text] [Related]
2. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins. Dixon M Biochim Biophys Acta; 1971 Mar; 226(2):269-84. PubMed ID: 4396857 [No Abstract] [Full Text] [Related]
3. A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Krenitsky TA; Neil SM; Elion GB; Hitchings GH Arch Biochem Biophys; 1972 Jun; 150(2):585-99. PubMed ID: 5044040 [No Abstract] [Full Text] [Related]
4. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. McCord JM; Fridovich I J Biol Chem; 1970 Mar; 245(6):1374-7. PubMed ID: 5462997 [No Abstract] [Full Text] [Related]
5. Oxidation of 4-hydroxypyrazolo (3,4-d) pyrimidine by xanthine oxidase, the route of electron transfer from substrate to acceptor dyes. Spector T; Johns DG Biochem Biophys Res Commun; 1968 Sep; 32(6):1039-44. PubMed ID: 5750222 [No Abstract] [Full Text] [Related]
7. HEPATIC ALDEHYDE OXIDASE. II. DIFFERENTIAL INHIBITION OF ELECTRON TRANSFER TO VARIOUS ELECTRON ACCEPTORS. RAJAGOPALAN KV; HANDLER P J Biol Chem; 1964 Jun; 239():2022-6. PubMed ID: 14213392 [No Abstract] [Full Text] [Related]
8. The resolution of active and inactive xanthine oxidase by affinity chromatography. Edmondson D; Massey V; Palmer G; Beacham LM; Elion GB J Biol Chem; 1972 Mar; 247(5):1597-604. PubMed ID: 4335003 [No Abstract] [Full Text] [Related]
9. The existence of nonfunctional active sites in milk xanthine oxidase: reaction with functional active site inhibitors. Massey V; Komai H; Palmer G; Elion GB Vitam Horm; 1970; 28():505-31. PubMed ID: 4335890 [No Abstract] [Full Text] [Related]
10. The acceptor specificity of flavins and flavoproteins. II. Free flavins. Dixon M Biochim Biophys Acta; 1971 Mar; 226(2):259-68. PubMed ID: 4324966 [No Abstract] [Full Text] [Related]
11. One-electron transfer reactions in biochemical systems. VII. Two types of electron outlets in milk xanthine oxidase. Nakamura M; Yamazaki I Biochim Biophys Acta; 1973 Dec; 327(2):247-56. PubMed ID: 4360425 [No Abstract] [Full Text] [Related]
12. 4-Hydroxypyrazolo (3,4-d) pyrimidine as a substrate for xanthine oxidase: loss of conventional substrate activity with catalytic cycling of the enzyme. Spector T; Johns DG Biochem Biophys Res Commun; 1970 Feb; 38(4):583-9. PubMed ID: 5462699 [No Abstract] [Full Text] [Related]
13. EVIDENCE FOR AEROBIC AND ANAEROBIC MECHANISMS FOR REDUCTION OF CYTOCHROME C BY XANTHINE OXIDASE. MURAOKA S; SUGIYAMA M; YAMASAKI H Biochem Biophys Res Commun; 1965 Apr; 19():346-50. PubMed ID: 14317400 [No Abstract] [Full Text] [Related]
14. Oxidation of 7-aminothiadiazolo(3,4-d)pyrimidines and 7-aminofurazano(3,4-d)pyrimidines by xanthine oxidase and aldehyde oxidase. McCormack JJ; Taylor EC Biochem Pharmacol; 1975 Sep; 24(17):1636-9. PubMed ID: 172085 [No Abstract] [Full Text] [Related]
16. Reactivity of D-amino acid oxidase with artificial electron acceptors. Rao NA; Nishikimi M; Yagi K Biochim Biophys Acta; 1972 Aug; 276(2):350-62. PubMed ID: 4403528 [No Abstract] [Full Text] [Related]
17. The univalent reduction of oxygen by reduced flavins and quinones. Misra HP; Fridovich I J Biol Chem; 1972 Jan; 247(1):188-92. PubMed ID: 4401581 [No Abstract] [Full Text] [Related]
18. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Rashidi MR; Smith JA; Clarke SE; Beedham C Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775 [TBL] [Abstract][Full Text] [Related]