BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 540614)

  • 1. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.
    Santhanam CJ; Lunt RR; Johnson SL; Cooper CB; Thayer PS; Jones JW
    Environ Health Perspect; 1979 Dec; 33():131-57. PubMed ID: 540614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products.
    Alvarez-Ayuso E; Querol X; Tomás A
    Chemosphere; 2006 Dec; 65(11):2009-17. PubMed ID: 16890268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.
    Van Hook RI
    Environ Health Perspect; 1979 Dec; 33():227-47. PubMed ID: 540619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.
    Chen L; Stehouwer R; Tong X; Kost D; Bigham JM; Dick WA
    Chemosphere; 2015 Sep; 134():459-65. PubMed ID: 26001939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of metals recovery from thermal power plant solid wastes.
    Meawad AS; Bojinova DY; Pelovski YG
    Waste Manag; 2010 Dec; 30(12):2548-59. PubMed ID: 20702078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal.
    Alvarez-Ayuso E; Querol X
    Chemosphere; 2008 Mar; 71(1):140-6. PubMed ID: 18063008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence.
    Zierold KM; Odoh C
    Rev Environ Health; 2020 Nov; 35(4):401-418. PubMed ID: 32324165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems.
    Qiao XC; Poon CS; Cheeseman C
    Waste Manag; 2006; 26(2):141-9. PubMed ID: 15927458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a leaching test framework for coal fly ash accounting for environmental conditions.
    Zandi M; Russell NV
    Environ Monit Assess; 2007 Aug; 131(1-3):509-26. PubMed ID: 17171257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power production waste.
    Cai Y; Zhang P; Liang J; Wang Q; Ding Y
    Water Environ Res; 2020 Oct; 92(10):1711-1716. PubMed ID: 32762097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
    Sun M; Sun W; Barlaz MA
    Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.
    Haynes RJ
    J Environ Manage; 2009 Jan; 90(1):43-53. PubMed ID: 18706753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental damage caused by coal combustion residue disposal: A critical review of risk assessment methodologies.
    Petrović M; Fiket Ž
    Chemosphere; 2022 Jul; 299():134410. PubMed ID: 35346741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Report of health and environmental effects of increased coal utilization by the Committee on Health and Environmental Effects of Increased Coal Utilization.
    The Committee on Health and Environmental Effects of Increased Coal Utilization
    Environ Health Perspect; 1980 Jun; 36():135-53. PubMed ID: 6775943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power production waste.
    Ye J; Zubair M; Wang S; Cai Y; Zhang P
    Water Environ Res; 2019 Oct; 91(10):1091-1096. PubMed ID: 31408924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Historical releases of mercury to air, land, and water from coal combustion.
    Streets DG; Lu Z; Levin L; Ter Schure AFH; Sunderland EM
    Sci Total Environ; 2018 Feb; 615():131-140. PubMed ID: 28964988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.
    Xin M; Gustin MS; Ladwig K; Pflughoeft-Hassett DF
    J Air Waste Manag Assoc; 2006 Aug; 56(8):1167-76. PubMed ID: 16933649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-Term Exposure to Coal Combustion Waste Has Little Impact on the Skin Microbiome of Adult Spring Peepers (Pseudacris crucifer).
    Hughey MC; Walke JB; Becker MH; Umile TP; Burzynski EA; Minbiole KPC; Iannetta AA; Santiago CN; Hopkins WA; Belden LK
    Appl Environ Microbiol; 2016 Jun; 82(12):3493-3502. PubMed ID: 27037118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on each phase characteristics of the whole coal life cycle and their ecological risk assessment-a case of coal in China.
    Dai W; Dong J; Yan W; Xu J
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1296-1305. PubMed ID: 27771879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.