These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 5409586)

  • 1. The effects of hypoxia and isovolemic anemia on the halothane requirement (MAC) of dogs. II. The effects of acute hypoxia on halothane requirement and cerebral-surface Po2, Pco2, pH and HCO3.
    Cullen DJ; Cotev S; Severinghaus JW; Eger EI
    Anesthesiology; 1970 Jan; 32(1):35-45. PubMed ID: 5409586
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of hypoxia and isovolemic anemia on the halothane requirement (MAC) of dogs. I. The effect of hypoxia.
    Cullen DJ; Eger EI
    Anesthesiology; 1970 Jan; 32(1):28-34. PubMed ID: 5409585
    [No Abstract]   [Full Text] [Related]  

  • 3. Steady state differences in PCO2 [HCO3-] and [H+] between blood and extravascular tissue. Results for lung, CSF and brain.
    Gurtner GH; Burns B; Davies DG
    Chest; 1972 Feb; 61(2):Suppl:31S-39S. PubMed ID: 5009860
    [No Abstract]   [Full Text] [Related]  

  • 4. Cerebral ECF acidosis induced by hypoxia at normal and low pCO2.
    Cotev S; Cullen D; Severinghaus J
    Scand J Clin Lab Invest Suppl; 1968; 102():III:E. PubMed ID: 5707541
    [No Abstract]   [Full Text] [Related]  

  • 5. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs.
    McKinley BA; Morris WP; Parmley CL; Butler BD
    Crit Care Med; 1996 Nov; 24(11):1858-68. PubMed ID: 8917037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of hypoxia and isovolemic anemia on the halothane requirement (MAC) of dogs. 3. The effects of acute isovolemic anemia.
    Cullen DJ; Eger EI
    Anesthesiology; 1970 Jan; 32(1):46-50. PubMed ID: 5409588
    [No Abstract]   [Full Text] [Related]  

  • 7. Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans.
    Fencl V; Vale JR; Broch JA
    J Appl Physiol; 1969 Jul; 27(1):67-76. PubMed ID: 5786972
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body.
    Buckler KJ; Vaughan-Jones RD; Peers C; Lagadic-Gossmann D; Nye PC
    J Physiol; 1991 Dec; 444():703-21. PubMed ID: 1822566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased brain interstitial fluid adenosine concentration during hypoxia in newborn piglet.
    Park TS; Van Wylen DG; Rubio R; Berne RM
    J Cereb Blood Flow Metab; 1987 Apr; 7(2):178-83. PubMed ID: 3558500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral hypoxia from bicarbonate infusion in diabetic acidosis.
    Bureau MA; Bégin R; Berthiaume Y; Shapcott D; Khoury K; Gagnon N
    J Pediatr; 1980 Jun; 96(6):968-73. PubMed ID: 6768868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH of cerebrospinal fluid in the cisterna Magna and on the surface of the choroid plexus of the 4th ventricle and its effect on ventilation in experimental disturbances of acid base balance. Transients and steady states.
    Loeschcke HH; Sugioka K
    Pflugers Arch; 1969; 312(4):161-88. PubMed ID: 5387880
    [No Abstract]   [Full Text] [Related]  

  • 12. Continuous monitoring of muscle gas tensions and pH during tissue acid-base disturbances.
    Filler RM; Das JB; Schwartz AA; Hoffman P; Del Campo NM
    J Pediatr Surg; 1974 Oct; 9(5):633-41. PubMed ID: 4421401
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of H+ and HCO3 minus between CSF and blood during metabolic acidosis in dogs.
    Pavlin EG; Hornbein TF
    Am J Physiol; 1975 Apr; 228(4):1134-40. PubMed ID: 236663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Acid-base equilibrium regulation in the cerebrospinal fluid].
    Kienle G
    Fortschr Neurol Psychiatr Grenzgeb; 1969 Oct; 37(10):552-68. PubMed ID: 5196689
    [No Abstract]   [Full Text] [Related]  

  • 15. Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats.
    Voipio J; Ballanyi K
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):527-42. PubMed ID: 9080379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemical control of ventilation.
    Sorensen SC
    Acta Physiol Scand Suppl; 1971; 361():1-72. PubMed ID: 5286037
    [No Abstract]   [Full Text] [Related]  

  • 17. Cerebrovascular adaptation to prolonged halothane anesthesia is not related to cerebrospinal fluid pH.
    Warner DS; Boarini DJ; Kassell NF
    Anesthesiology; 1985 Sep; 63(3):243-8. PubMed ID: 4025885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory response to arterial H+ at different levels of arterial PCO2 during hyperoxia or hypoxia.
    Natsui T
    Pflugers Arch; 1970; 316(1):34-50. PubMed ID: 5461399
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of pH and HCO3 in brain and CSF of the developing mammalian central nervous system.
    Johanson CE; Allen J; Withrow CD
    Brain Res; 1988 Feb; 466(2):255-64. PubMed ID: 3129145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in brain surface and cisternal fluid pH during Na-pentobarbital induced cardiac arrest in dogs.
    Javaheri S
    Bull Eur Physiopathol Respir; 1982; 18(5):775-82. PubMed ID: 6821471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.