BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 5409800)

  • 1. Energy substrate metabolism in fresh and stored human platelets.
    Cohen P; Wittels B
    J Clin Invest; 1970 Jan; 49(1):119-27. PubMed ID: 5409800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways of fatty acid metabolism in human platelets.
    Cohen P; Derksen A; Van den Bosch H
    J Clin Invest; 1970 Jan; 49(1):128-39. PubMed ID: 5409801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum factors that stimulate fatty acid oxidation: physiological specificity.
    Stanisz J; Wice BM; Kennell DE
    J Cell Physiol; 1986 Jan; 126(1):141-6. PubMed ID: 3944194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered lipid metabolism in human platelets after primary aggregation.
    Deykin D
    J Clin Invest; 1973 Feb; 52(2):483-92. PubMed ID: 4683885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies.
    Murphy S; Gardner FH
    J Clin Invest; 1971 Feb; 50(2):370-7. PubMed ID: 5540174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic energy reduction by glucose deprivation and low gas exchange preserves platelet function after 48 h storage at 4 degrees C.
    Badlou BA; van der Meer PF; Akkerman JW; Smid WM; Pietersz RN
    Vox Sang; 2007 May; 92(4):311-8. PubMed ID: 17456155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progesterone biosynthesis supported by fatty acid oxidation in the mitochondrial fraction of human term placenta.
    Tiałowska B; Klimek J; Zelewski L
    Acta Biochim Pol; 1983; 30(1):11-21. PubMed ID: 6868904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of long-chain free fatty acids by human platelets.
    Spector AA; Hoak JC; Warner ED; Fry GL
    J Clin Invest; 1970 Aug; 49(8):1489-96. PubMed ID: 5431660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma.
    De Castro J; Hernández-Hernández A; Rodríguez MC; Sardina JL; Llanillo M; Sánchez-Yagüe J
    Platelets; 2007 Feb; 18(1):43-51. PubMed ID: 17365853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretion defect in platelets stored at 4 degrees C.
    Rao AK; Murphy S
    Thromb Haemost; 1982 Jun; 47(3):221-5. PubMed ID: 7112493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes.
    Abdel-aleem S; Nada MA; Sayed-Ahmed M; Hendrickson SC; St Louis J; Walthall HP; Lowe JE
    J Mol Cell Cardiol; 1996 May; 28(5):825-33. PubMed ID: 8762022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotide metabolism in stored human platelets.
    Odake K; Ambrus JL
    Am J Pathol; 1969 Sep; 56(3):393-403. PubMed ID: 5822313
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidation and metabolic interconversion in malignant cachexia.
    Waterhouse C
    Cancer Treat Rep; 1981; 65 Suppl 5():61-6. PubMed ID: 7346162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycogenesis and glyconeogenesis in human platelets. Incorporation of glucose, pyruvate, and citrate into platelet glycogen; glycogen synthetase and fructose-1,6-diphosphatase activity.
    Karpatkin S; Charmatz A; Langer RM
    J Clin Invest; 1970 Jan; 49(1):140-9. PubMed ID: 5409802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of urea on energy metabolism of human blood platelets.
    Schneider W; Schumacher K; Gross R
    Thromb Diath Haemorrh; 1969 Aug; 22(1):208-9. PubMed ID: 5821244
    [No Abstract]   [Full Text] [Related]  

  • 17. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanisms of the regulation of muscle energy metabolism on oxidation of glucose and fatty acids. A mathematical model].
    Dynnik VV
    Biokhimiia; 1982 Aug; 47(8):1278-88. PubMed ID: 6215068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative energy metabolism in cultured heart muscle and HeLa cells.
    Stanisz J; Wice BM; Kennell DE
    J Cell Physiol; 1983 Jun; 115(3):320-30. PubMed ID: 6853608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of changes in erythrocyte and platelet fatty acid composition and protein oxidation in advanced non-small cell lung cancer.
    de Castro J; Hernández-Hernández A; Rodríguez MC; Llanillo M; Sánchez-Yagüe J
    Cancer Invest; 2006; 24(4):339-45. PubMed ID: 16777684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.