These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5410703)

  • 21. An improved volumetric dosimeter for internal dose verification.
    Aissi A; Poston JW
    Health Phys; 1984 Feb; 46(2):371-6. PubMed ID: 6693267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lithium borate TLD for determining the backscatter factors for low-energy x rays: comparison with chamber-based and Monte Carlo derived values.
    Coudin D; Marinello G
    Med Phys; 1998 Mar; 25(3):347-53. PubMed ID: 9547502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy dependence of new thermoluminescent detectors in terms of HP(10) values.
    Miljanić S; Knezević Z; Stuhec M; Ranogajec-Komor M; Krpan K; Vekić B
    Radiat Prot Dosimetry; 2003; 106(3):253-6. PubMed ID: 14690327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of sintered magnesium borate thermoluminescent dosimeters for low dose measurements.
    Ogunleye OT; Richmond RG; Cash BL
    Health Phys; 1985 Sep; 49(3):527-32. PubMed ID: 4030343
    [No Abstract]   [Full Text] [Related]  

  • 25. Concerning Li2B4O7 thermoluminescence dosimeters.
    Soares CG; Ehrlich M
    Med Phys; 1979; 6(4):312. PubMed ID: 481359
    [No Abstract]   [Full Text] [Related]  

  • 26. The effects of the thermoluminescent dosimeter badge on the monitoring of low energy x-radiation.
    Worley RD
    Health Phys; 1982 Sep; 43(3):422-5. PubMed ID: 7174337
    [No Abstract]   [Full Text] [Related]  

  • 27. Ecological dosimetry: radiation levels influenced by plant growth.
    Ashby WC; Beggs JN; Kastner J; Oltman BG; Moses H
    Science; 1967 Mar; 155(3768):1430-2. PubMed ID: 6018509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fading in thermoluminescent lithium fluoride used for radiation dosimetry.
    Fowler JF; Shuttleworth E; Svarcer V; White JT; Karzmark CJ
    Nature; 1965 Aug; 207(5000):997-8. PubMed ID: 5886948
    [No Abstract]   [Full Text] [Related]  

  • 29. Thermoluminescent dosimeters for high-dose applications.
    Gorbics SG; Attix FH; Kerris K
    Health Phys; 1973 Nov; 25(5):499-506. PubMed ID: 4786580
    [No Abstract]   [Full Text] [Related]  

  • 30. Thermal neutron and gamma ray mixed field dosimetry with Li2B4O7:Mn.
    Lakshmanan AR; Rajendran KV; Ayyangar K; Madhvanath U
    Health Phys; 1976 Jun; 30(6):489-91. PubMed ID: 955906
    [No Abstract]   [Full Text] [Related]  

  • 31. New developments in thermoluminescent dosimetry.
    Schayès R; Brooke C; Kozlowitz I; Lheureux M
    Health Phys; 1968 Mar; 14(3):251-63. PubMed ID: 5637397
    [No Abstract]   [Full Text] [Related]  

  • 32. The energy response of LiF, film and a chemical dosemeter to high energy photons and electrons.
    Bistrović M; Maricić Z; Greenfield MA; Breyer B; Dvornik I; Slaus I; Tomas P
    Phys Med Biol; 1976 May; 21(3):414-21. PubMed ID: 935255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The energy-size dependence of the response of thermoluminescent dosimeters to photon irradiation.
    Chan FK; Burlin TE
    Health Phys; 1970 Apr; 18(4):325-32. PubMed ID: 5513057
    [No Abstract]   [Full Text] [Related]  

  • 34. A comparison of lithium fluoride and film for personal dosimetry of X- and gamma radiations.
    Busuoli G; Cavallini A
    Minerva Fisiconucl; 1969; 13(4):265-70. PubMed ID: 5381862
    [No Abstract]   [Full Text] [Related]  

  • 35. Dose-rate dependence of lithium fluoride for exposures above 15,000 R per pulse.
    Goldstein N
    Health Phys; 1972 Jan; 22(1):90-1. PubMed ID: 5012300
    [No Abstract]   [Full Text] [Related]  

  • 36. DAMAGE EFFECTS IN CAF2:MN AND LIF THERMOLUMINESCENT DOSIMETERS.
    MARRONE MJ; ATTIX FH
    Health Phys; 1964 Jun; 10():431-6. PubMed ID: 14170714
    [No Abstract]   [Full Text] [Related]  

  • 37. An improved thermoluminescence dosimetry system.
    Hartin WJ
    Health Phys; 1967 Jun; 13(6):567-73. PubMed ID: 6035206
    [No Abstract]   [Full Text] [Related]  

  • 38. A film-thermoluminescent dosimetry method for predicting body doses due to diagnostic radiography.
    Vacirca SJ; Thompson DL; Pasternack BS; Blatz H
    Phys Med Biol; 1972 Jan; 17(1):71-80. PubMed ID: 5071504
    [No Abstract]   [Full Text] [Related]  

  • 39. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.
    Williams AM; Beeley PA; Spyrou NM
    Radiat Prot Dosimetry; 2004; 110(1-4):497-502. PubMed ID: 15353698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a lithium formate EPR dosimetry system for dose measurements around 192Ir brachytherapy sources.
    Antonovic L; Gustafsson H; Carlsson GA; Carlsson Tedgren A
    Med Phys; 2009 Jun; 36(6):2236-47. PubMed ID: 19610313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.