These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 5411430)

  • 1. The preparation of iodinated vancomycin and its distribution in bacteria treated with the antibiotic.
    Perkins HR; Nieto M
    Biochem J; 1970 Jan; 116(1):83-92. PubMed ID: 5411430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides.
    Schäfer AB; Wenzel M
    Front Cell Infect Microbiol; 2020; 10():540898. PubMed ID: 33194788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance.
    Zeng D; Debabov D; Hartsell TL; Cano RJ; Adams S; Schuyler JA; McMillan R; Pace JL
    Cold Spring Harb Perspect Med; 2016 Dec; 6(12):. PubMed ID: 27663982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oritavancin binds to isolated protoplast membranes but not intact protoplasts of Staphylococcus aureus.
    Kim SJ; Singh M; Schaefer J
    J Mol Biol; 2009 Aug; 391(2):414-25. PubMed ID: 19538971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic side-chain length determines activity and conformational heterogeneity of a vancomycin derivative bound to the cell wall of Staphylococcus aureus.
    Kim SJ; Schaefer J
    Biochemistry; 2008 Sep; 47(38):10155-61. PubMed ID: 18759499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the autolytic system by vancomycin causes mimicry of vancomycin-intermediate Staphylococcus aureus-type resistance, cell concentration dependence of the MIC, and antibiotic tolerance in vancomycin-susceptible S. aureus.
    Sieradzki K; Tomasz A
    Antimicrob Agents Chemother; 2006 Feb; 50(2):527-33. PubMed ID: 16436706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus.
    Sieradzki K; Tomasz A
    J Bacteriol; 1997 Apr; 179(8):2557-66. PubMed ID: 9098053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of peptidoglycan biosynthesis in vancomycin-susceptible and -resistant bacteria by a semisynthetic glycopeptide antibiotic.
    Allen NE; Hobbs JN; Nicas TI
    Antimicrob Agents Chemother; 1996 Oct; 40(10):2356-62. PubMed ID: 8891144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile effects of bacterial cell walls, their enzymatic digests, and muramyl dipeptides on ileal strips from guinea pigs.
    Ogawa T; Kotani S; Tsujimoto M; Kusumoto S; Shiba T; Kawata S; Yokogawa K
    Infect Immun; 1982 Feb; 35(2):612-9. PubMed ID: 7056578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell wall synthesis and initiation of deoxyribonucleic acid replication in Bacillus subtilis.
    Sandler N; Keynan A
    J Bacteriol; 1981 Nov; 148(2):443-9. PubMed ID: 6795178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin.
    Nieto M; Perkins HR
    Biochem J; 1971 Aug; 123(5):789-803. PubMed ID: 5124386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical properties of vancomycin and iodovancomycin and their complexes with diacetyl-L-lysyl-D-alanyl-D-alanine.
    Nieto M; Perkins HR
    Biochem J; 1971 Aug; 123(5):773-87. PubMed ID: 5124385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoserine and diaminobutyric acid in the mucopeptide-precursor-nucleotides and cell walls of some plant-pathogenic corynebacteria.
    Perkins HR
    Biochem J; 1971 Feb; 121(3):417-23. PubMed ID: 5119774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of autolysins in the killing of bacteria by some bactericidal antibiotics.
    Rogers HJ; Forsberg CW
    J Bacteriol; 1971 Dec; 108(3):1235-43. PubMed ID: 5003174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro action of new antibiotics interfering with the utilization of N-acetyl-glucosamine-N-acetyl-muramyl-pentapeptide.
    Lugtenberg EJ; v Schijndel-van Dam A; van Bellegem TH
    J Bacteriol; 1971 Oct; 108(1):20-9. PubMed ID: 5001198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal by a specific peptide (diacetyl-alpha gamma-L-diaminobutyryl-D-alanyl-D-alanine) of vancomycin inhibition in intact bacteria and cell-free preparations.
    Nieto M; Perkins HR; Reynolds PE
    Biochem J; 1972 Jan; 126(1):139-49. PubMed ID: 4627581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis in Gaffkya homari.
    Hammes WP; Neuhaus FC
    Antimicrob Agents Chemother; 1974 Dec; 6(6):722-8. PubMed ID: 4451345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodinated vancomycin and mucopeptide biosynthesis by cell-free preparations from Micrococcus lysodeikticus.
    Bordet C; Perkins HR
    Biochem J; 1970 Oct; 119(5):877-83. PubMed ID: 4250137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, biochemistry and mechanism of action of glycopeptide antibiotics.
    Reynolds PE
    Eur J Clin Microbiol Infect Dis; 1989 Nov; 8(11):943-50. PubMed ID: 2532132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes.
    Dutka-Malen S; Molinas C; Arthur M; Courvalin P
    Mol Gen Genet; 1990 Dec; 224(3):364-72. PubMed ID: 2266943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.