These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 5412035)

  • 1. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

  • 2. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores.
    Chance B; Crofts AR; Nishimura M; Price B
    Eur J Biochem; 1970 Apr; 13(2):364-74. PubMed ID: 5439938
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of ionophorous antibiotics on the light-induced internal and external hydrogen ion changes and phosphorylation in bacterial chromatophores.
    Nishimura M; Pressman BC
    Biochemistry; 1969 Apr; 8(4):1360-70. PubMed ID: 5805287
    [No Abstract]   [Full Text] [Related]  

  • 4. Fluorescence of bacteriochlorophyll as related to the photochemistry of chromatophores of photosynthetic bacteria.
    Suzuki Y; Takamiya A
    Biochim Biophys Acta; 1972 Sep; 275(3):358-68. PubMed ID: 4627083
    [No Abstract]   [Full Text] [Related]  

  • 5. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 6. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria.
    Crofts AR; Evans EH; Cogdell RJ
    Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309
    [No Abstract]   [Full Text] [Related]  

  • 7. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. II. Comparison of diffraction patterns of photosynthetic units from various purple bacteria.
    Kataoka M; Inai K; Ueki T; Yamashita J
    J Biochem; 1984 Feb; 95(2):567-73. PubMed ID: 6425275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum.
    Halsey YD; Parson WW
    Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

  • 10. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):384-96. PubMed ID: 5363976
    [No Abstract]   [Full Text] [Related]  

  • 11. Differences in sensitivity to valinomycin and nonactin of various photophosphorylating and photoreducing systems of Rhodospirillum rubrum chromatpohores.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1970 Nov; 223(1):174-82. PubMed ID: 4320754
    [No Abstract]   [Full Text] [Related]  

  • 12. Ion transport induced by light and antibiotics IN CHROMATOPHORES FROM Rhodospirillum rubrum.
    Jackson JB; Crofts AR; von Stedingk LV
    Eur J Biochem; 1968 Oct; 6(1):41-54. PubMed ID: 5725812
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria.
    GOEDHEER JC
    Biochim Biophys Acta; 1959 Sep; 35():1-8. PubMed ID: 13850395
    [No Abstract]   [Full Text] [Related]  

  • 14. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria.
    Monger TG; Cogdell RJ; Parson WW
    Biochim Biophys Acta; 1976 Oct; 449(1):136-53. PubMed ID: 823977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

  • 16. Decline in bacteriochlorophyll fluorescence induced by carotenoid absorption.
    Goedheer JC; van der Tuin AK
    Biochim Biophys Acta; 1967 Sep; 143(2):399-407. PubMed ID: 6049957
    [No Abstract]   [Full Text] [Related]  

  • 17. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206
    [No Abstract]   [Full Text] [Related]  

  • 18. Near-infrared action spectra of fluorescence, cytochrome oxidation and shift in carotenoid absorption in purple bacteria.
    Amesz J; Vredenberg WJ
    Biochim Biophys Acta; 1966 Oct; 126(2):254-61. PubMed ID: 5971851
    [No Abstract]   [Full Text] [Related]  

  • 19. Some effects of iron deficiency on Rhodopseudomonas spheroides strain Y.
    Reiss-Husson F; De Klerk H; Jolchine G; Jauneau E; Kamen MD
    Biochim Biophys Acta; 1971 Apr; 234(1):73-82. PubMed ID: 5560364
    [No Abstract]   [Full Text] [Related]  

  • 20. Uncoupling and charge transfer in bacterial chromatophores.
    Montal M; Nishimura M; Chance B
    Biochim Biophys Acta; 1970 Nov; 223(1):183-8. PubMed ID: 5484051
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.