These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5412774)

  • 21. Spectral and photochemical properties of subchromatophore fractions derived from carotenoid-deficient Chromatium by triton treatment.
    Ke B; Chaney TH
    Biochim Biophys Acta; 1971 Mar; 226(2):341-53. PubMed ID: 5575163
    [No Abstract]   [Full Text] [Related]  

  • 22. PHOTOREDUCTION OF NICOTINAMIDE-ADENINE DINUCLEOTIDE BY A CELL-FREE SYSTEM FROM CHROMATIUM.
    HOOD SL
    Biochim Biophys Acta; 1964 Nov; 88():461-5. PubMed ID: 14249088
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on bacterial chromatophores. I. Reversible disturbance of transfer of electronic excitation energy between bacteriochlorophyll-types in Chromatium.
    BRIL C
    Biochim Biophys Acta; 1960 Apr; 39():296-303. PubMed ID: 13804436
    [No Abstract]   [Full Text] [Related]  

  • 24. A large photoreactive particle from Chromatium vinosum chromatophores.
    Halsey YD; Gyers B
    Biochim Biophys Acta; 1975 May; 387(2):349-67. PubMed ID: 1125294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABSORPTION CHANGES IN BACTERIAL CHROMATOPHORES.
    KUNTZ ID; LOACH PA; CALVIN M
    Biophys J; 1964 May; 4(3):227-49. PubMed ID: 14185583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared absorption spectra of light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum.
    Hayashi H; Morita S
    J Biochem; 1980 Nov; 88(5):1251-8. PubMed ID: 7462180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D.
    Schleyer H
    Biochim Biophys Acta; 1968 Feb; 153(2):427-47. PubMed ID: 4296026
    [No Abstract]   [Full Text] [Related]  

  • 28. Photooxidation of cytochromes in reaction center preparations from Chromatium and Rhodopseudomonas viridis.
    Case GD; Parson WW; Thornber JP
    Biochim Biophys Acta; 1970 Nov; 223(1):122-8. PubMed ID: 5484048
    [No Abstract]   [Full Text] [Related]  

  • 29. Properties of Chromatium subchromatophore particles obtained by treatment with Triton X-100.
    Garcia A; Vernon LP; Mollenhauer H
    Biochemistry; 1966 Jul; 5(7):2399-407. PubMed ID: 5959463
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum.
    Hashimoto K; Nishimura M
    J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069
    [No Abstract]   [Full Text] [Related]  

  • 32. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium.
    Case GD; Parson WW
    Biochim Biophys Acta; 1973 Apr; 292(3):677-84. PubMed ID: 4705448
    [No Abstract]   [Full Text] [Related]  

  • 33. UV-Induced destruction of light-harvesting complexes from purple bacterium Chromatium minutissimum.
    Solov'ev AA; Makhneva ZK; Erokhin YU
    Membr Cell Biol; 2001; 14(4):463-74. PubMed ID: 11497101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of electrogenic electron transfer steps in chromatophore membrane of Chromatium vinosum by the response of merocyanin dye.
    Itoh S
    Biochim Biophys Acta; 1980 Dec; 593(2):212-23. PubMed ID: 7236632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB; Buchanan BB
    Biochim Biophys Acta; 1975 Mar; 376(3):549-60. PubMed ID: 1125222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Light-induced changes in oxidation-reduction potential of Chromatium chromatophores in the presence of p-benzoquinone].
    Krakhmaleva IN; Karapetian NV; KrasnovskiÄ­ AA
    Biofizika; 1972; 17(6):990-6. PubMed ID: 4643729
    [No Abstract]   [Full Text] [Related]  

  • 37. Photoconversions of bacteriochlorophylls and cytochromes in Chromatium chromatophores and cells under reducing conditions.
    Karapetyan NV; Krakhmaleva IN; Krasnovskii AA
    Mol Biol; 1974 May; 7(6):717-22. PubMed ID: 4365134
    [No Abstract]   [Full Text] [Related]  

  • 38. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S; Miyazaki T
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid-base indicator for the measurement of rapid changes in hydrogen ion concentration.
    Chance B; Scarpa A
    Methods Enzymol; 1972; 24():336-42. PubMed ID: 4206743
    [No Abstract]   [Full Text] [Related]  

  • 40. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria.
    Crofts AR; Evans EH; Cogdell RJ
    Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.