These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 5413291)

  • 21. Gas chromatographic chemical ionization-mass fragmentometric assay of catecholamines in the brain.
    Mizuno Y; Ariga T
    Clin Chim Acta; 1979 Nov; 98(3):217-24. PubMed ID: 498535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the fixation of catecholamines including adrenaline in tissue sections.
    Coupland RE; Kobayashi S; Crowe J
    J Anat; 1976 Nov; 122(Pt 2):403-13. PubMed ID: 794048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of catecholamines from catechol acids by alumina.
    Drell W
    Anal Biochem; 1970 Mar; 34():142-51. PubMed ID: 5440904
    [No Abstract]   [Full Text] [Related]  

  • 24. [The effect of DOPA on catecholamine metabolism in spinal pain syndrome].
    Matlina ESh; Pukhova GS; Grafova VN; Kassil' GN; Kryshanovskii GN
    Vopr Med Khim; 1973; 19(2):173-6. PubMed ID: 4707507
    [No Abstract]   [Full Text] [Related]  

  • 25. Determination of catecholamines in tissue and body fluids using microbore HPLC with amperometric detection.
    Durkin TA; Caliguri EJ; Mefford IN; Lake DM; Macdonald IA; Sundstrom E; Jonsson G
    Life Sci; 1985 Nov; 37(19):1803-10. PubMed ID: 3932804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the O-methylated metabolites of isoprenaline, adrenaline and noradrenaline in physiological salt solutions by high-performance liquid chromatography with electrochemical detection.
    Bryan LJ; O'Donnell SR
    J Chromatogr; 1989 Jan; 487(1):29-39. PubMed ID: 2715273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible sources of error in solvent extraction procedures for catecholamines.
    Anton AH; Sayre DF
    Eur J Pharmacol; 1968 Nov; 4(4):435-40. PubMed ID: 5724920
    [No Abstract]   [Full Text] [Related]  

  • 28. N-hydroxysuccinimidyl fluorescein-O-acetate as a fluorescent derivatizing reagent for catecholamines in liquid chromatography.
    Wang H; Li J; Liu X; Yang TX; Zhang HS
    Anal Biochem; 2000 May; 281(1):15-20. PubMed ID: 10847605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sensitive radioenzymatic assay for dopamine, norepinephrine, and epinephrine in plasma and tissue.
    Ben-Jonathan N; Porter JC
    Endocrinology; 1976 Jun; 98(6):1497-507. PubMed ID: 1278114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The concentration of catecholamines in the brain of the domestic fowl (Gallus domesticus).
    Callingham BA; Sharman DF
    Br J Pharmacol; 1970 Sep; 40(1):1-5. PubMed ID: 5487020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of catecholamines, indoleamines, and their precursors and metabolites in the scallop, Placopecten magellanicus (Bivalvia, Pectinidae).
    Pani AK; Croll RP
    Cell Mol Neurobiol; 1995 Jun; 15(3):371-86. PubMed ID: 7553736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A reliable and sensitive method for the simultaneous determination of dopamine, noradrenaline, 5-hydroxytryptamine and 5-hydroxy-indolacetic acid in small brain samples.
    Orsingher OA; Marichich ES; Molina VA; Ramírez OA
    Acta Physiol Lat Am; 1980; 30(2):111-5. PubMed ID: 6180600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An attempt to identify putative neurotransmitter molecules in the central nervous system of the snail.
    Dolezalova H; Giacobini E; Stepita-Klauco M
    Int J Neurosci; 1973 Feb; 5(2):53-6. PubMed ID: 4144628
    [No Abstract]   [Full Text] [Related]  

  • 34. Central and peripheral catecholamine turnover studied by means of 3H-DOPA and 3H-tyrosine.
    Persson T
    Acta Pharmacol Toxicol (Copenh); 1969; 27(6):397-409. PubMed ID: 5395728
    [No Abstract]   [Full Text] [Related]  

  • 35. [The effect of lithium on the concentration of catecholamines in the brains of rabbits and rats].
    Saratikov AS; Spiridonova ZI; Alekseeva LP
    Biull Eksp Biol Med; 1975 Feb; 79(2):55-7. PubMed ID: 1131413
    [No Abstract]   [Full Text] [Related]  

  • 36. Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection.
    Wood AT; Hall MR
    J Chromatogr B Biomed Sci Appl; 2000 Jul; 744(1):221-5. PubMed ID: 10985586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The effect of amino acid loading on their distribution and the concentration of amines in the brains of rats].
    Kometiani PA; Chilingarov AO; Ibragimov II
    Vopr Biokhim Mozga; 1973; 8():257-68. PubMed ID: 4804891
    [No Abstract]   [Full Text] [Related]  

  • 38. Simple and sensitive procedure for the assay of serotonin and catecholamines in brain by high-performance liquid chromatography using fluorescence detection.
    Jackman GP; Carson VJ; Bobik A; Skews H
    J Chromatogr; 1980 Jun; 182(3-4):277-84. PubMed ID: 7391168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time course of the changes of catecholamine levels in rat brain during swimming stress.
    Sudo A
    Brain Res; 1983 Oct; 276(2):372-4. PubMed ID: 6627019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography.
    Fonseca BM; Rodrigues M; Cristóvão AC; Gonçalves D; Fortuna A; Bernardino L; Falcão A; Alves G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Apr; 1049-1050():51-59. PubMed ID: 28273522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.