These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 5413579)

  • 1. Functional compensatory hypertrophy of the avian nasal gland.
    Ballantyne B; Wood WG
    J Anat; 1970 Jan; 106(Pt 1):173-4. PubMed ID: 5413579
    [No Abstract]   [Full Text] [Related]  

  • 2. Proceedings: the effect of post-ganglionic denervation on functional hypertrophy in the salt gland of the goose during adaptation to salt water.
    Hanwell A; Peaker M
    J Physiol; 1973 Oct; 234(2):78P-80P. PubMed ID: 4767079
    [No Abstract]   [Full Text] [Related]  

  • 3. The control of adaptive hypertrophy in the salt glands of geese and ducks.
    Hanwell A; Peaker M
    J Physiol; 1975 Jun; 248(1):193-205. PubMed ID: 168357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tissue mass and functional demand on compensatory growth of the avian salt gland.
    Jephcott JJ; Hally AD
    J Anat; 1970 Mar; 106(Pt 2):405. PubMed ID: 5442231
    [No Abstract]   [Full Text] [Related]  

  • 5. Adaptive hyperplasia and compensatory growth in the salt glands of ducks and geese.
    Knight CH; Peaker M
    J Physiol; 1979 Sep; 294():145-51. PubMed ID: 512938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biochemical nature of the cell periphery of the salt gland secretory cells of fresh and salt water adapted mallard ducks.
    Martin BJ; Philpott CW
    Cell Tissue Res; 1974 Jul; 150(2):193-211. PubMed ID: 4136252
    [No Abstract]   [Full Text] [Related]  

  • 7. The influence of growth rate and retardation on the nucleic acid and nitrogen concentration in skeletal muscles and whole body composition of the mouse.
    Robinson DW; Lambourne LJ
    Growth; 1970 Sep; 34(3):235-55. PubMed ID: 5471820
    [No Abstract]   [Full Text] [Related]  

  • 8. Relation between ribosomes and functional growth in the avian nasal gland.
    Stewart DJ; Holmes WN
    Am J Physiol; 1970 Dec; 219(6):1819-24. PubMed ID: 5485699
    [No Abstract]   [Full Text] [Related]  

  • 9. Preparation and characterization of single cells from the avian salt gland.
    Hossler FE; Sarras MP
    Scan Electron Microsc; 1980; (Pt 2):155-62. PubMed ID: 7423116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of sodium chloride in the stimulation of growth in the salt glands of ducklings.
    Goertemiller CC; Ellis RA
    Z Mikrosk Anat Forsch; 1966; 74(3):296-302. PubMed ID: 5987085
    [No Abstract]   [Full Text] [Related]  

  • 11. The relation of the nucleic acids and nitrogen content of the thyroid tissue subcellular fractions to the synthesis of iodotyrosine in vitro.
    Degroot LJ; Matovinovic J
    Arq Bras Endocrinol Metabol; 1968 Jan; 17(1):47-53. PubMed ID: 5739586
    [No Abstract]   [Full Text] [Related]  

  • 12. Melatonin receptors and melatonin inhibition of duck salt gland secretion.
    Ching AC; Hughes MR; Poon AM; Pang SF
    Gen Comp Endocrinol; 1999 Nov; 116(2):229-40. PubMed ID: 10562453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocrine control of the nasal salt glands in birds.
    Butler DG
    J Exp Zool; 1984 Dec; 232(3):725-36. PubMed ID: 6394709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of saline intake on water flux and osmotic homeostasis in Pekin ducks (Anas platyrhynchos).
    Bennett DC; Gray DA; Hughes MR
    J Comp Physiol B; 2003 Feb; 173(1):27-36. PubMed ID: 12592440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Morphological and histochemical studies of inactive salt glands in ducks].
    Burock G
    Verh Anat Ges; 1970; 64():497-502. PubMed ID: 5522450
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of orotic acid and purinor on the myocardium in compensatory hypertrophy and hyperfunction of heart, caused by experimental stenosis of aorta].
    Belen'kiĭ EE; Pogosova AV; Tunitskaia TA; Borisova TA
    Farmakol Toksikol; 1966; 29(6):685-8. PubMed ID: 6000365
    [No Abstract]   [Full Text] [Related]  

  • 17. [Nucleic acid synthesis and mitotic activity during the development of compensatory pulmonary hypertrophy in rats].
    Romanova LK; Leĭkina EM; Antipova KK
    Biull Eksp Biol Med; 1967 Mar; 63(3):96-100. PubMed ID: 5622354
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of the subunit isoforms of duck salt gland Na/K adenosine triphosphatase.
    Boldyrev AA; Lopina OD; Kenney M; Johnson P
    Biochem Biophys Res Commun; 1995 Nov; 216(3):1048-53. PubMed ID: 7488178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of the purified and reconstituted Na/K-ATPase of the avian salt gland.
    Gassner D; Komnick H
    Eur J Cell Biol; 1983 Jan; 29(2):226-35. PubMed ID: 6299740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hypernatremia on urea production in nephrectomized rats.
    Nitzan M; Zelmanovsky S
    Isr J Med Sci; 1968; 4(4):833-6. PubMed ID: 5707780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.